

De 09 a 29 de novembro de 2024

Ciências Agrárias FEMIC JOVEM

Miguel Ferreira Souza Rebeca Sanchez Lelisberto Baldo Vieira

Orientadora: Dra. Taís Arthur Corrêa

Coorientadora: Milleny Reis

E. E. Vicente Macedo

Universidade do Estado de Minas Gerais

Frutal, Minas Gerais

Brasil

Horta Agroecológica Escolar: Análise do Solo e Crescimento de Hortaliças em Substratos Sustentáveis

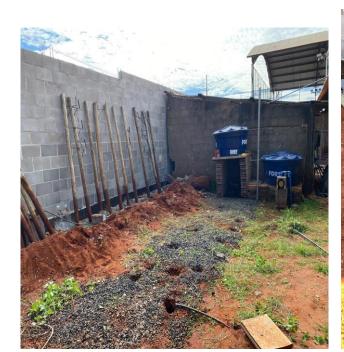
Apresentação

- A implementação de uma horta agroecológica no ambiente escolar visa promover a educação ambiental, incentivar hábitos alimentares saudáveis e aproximar os estudantes de práticas sustentáveis. A agroecologia, além de oferecer uma produção de alimentos livre de agrotóxicos e com maior respeito ao meio ambiente, também fortalece a relação entre o homem e a natureza, proporcionando um espaço de aprendizado prático para diversas disciplinas, como ciências, biologia e geografia.
- Portanto, ao integrar a análise de solo com a prática agroecológica, a escola se compromete a criar um ambiente produtivo, sustentável e educacionalmente rico, que beneficia tanto a comunidade escolar quanto o meio ambiente.

Objetivos

Revitalizar a estufa escolar, determinar a composição do solo e pH, proporcionando aos alunos a oportunidade de aprendizado prático no cultivo de alimentos, ao mesmo tempo em que avalia eficiência de diferentes substratos no crescimento de hortaliças. A iniciativa busca integrar teoria e prática, promovendo o entendimento de práticas agroecológicas desde a educação básica e estimulando hábitos alimentares saudáveis.

Metodologia



projeto iniciou-se com a revitalização da estufa e a construção de novos canteiros. Em seguida, realizou-se a coleta de amostras de solo, que foram secas, peneiradas e preparadas análise. Utilizando para metodologias da EMBRAPA, as amostras foram analisadas por espectrofotometria de absorção atômica e fotometria de chama.

Resultados alcançados

CONSTRUÇÃO DA ESTUFA

Resultados alcançados

Tabela 1 – Resultados da analise de solo.

CM CI	
8º Feira Mineira de Iniciação Científica	

Laudo de monitoramento nutricional do solo				Amostra
Símbolo	Metodologia	Elemento	Unidade	1
	t .			
pH	Água	Potecial Hidrogeniônico		5,4
Р	Mehlich-1	Fósforo	mg/dm³	5,37
К	Mehlich-1	Potássio	mmol/dm³	1,13
Са	KCI	Cálcio	mmol/dm³	10,50
Mg	KCI	Magnésio	mmol/dm³	4,58
Al	KCI	Aluminio	mmol/dm³	1,00
Al + H	Aceta. Cálcio	Ácid. Potencial	mmol/dm³	34,00
SB	-	Soma de Base	mmol/dm³	16,21
t	-	CTC efetiva	mmol/dm³	17,21
т	-	CTC pH 7,0	mmol/dm³	50,21
v	-	Percen. de sat. De base	%	32,29
m	-	Sat.Aluminio	%	5,81
Zn	Mehlich-1	Zinco	mg/dm³	0,65
Cu	Mehlich-1	Cobre	mg/dm³	0,28
Fe	Mehlich-1	Ferro	mg/dm³	19,58
Mn	Mehlich-1	Manganês	mg/dm³	0,08
В	Água quente	Boro	mg/dm³	N/S
S	Carvão ativado	Enxofre	mg/dm³	N/S
M.O	Dicromato de Na	Matéria Orgânica	Dag/Kg	N/S
Argila	NaOH 1,0 mol	Argila	%	N/S
Areia	NaOH 1,0 mol	Areia	%	N/S
Silte	NaOH 1,0 mol	Silte	%	N/S

resultados revelaram solo Os um arenoso, com baixo teor de fósforo (5,37 mg/dm³), potássio moderado (1,13)mmol/dm³), e níveis adequados de cálcio (10,50 mmol/dm³) e magnésio (4,58 mmol/dm³). O alumínio foi encontrado em baixa quantidade (1,00 mmol/dm³), enquanto a soma de bases (16,21 mmol/dm³) indicou uma capacidade de catiônica moderada (50,21)troca mmol/dm³).

Resultados esperados

• Os resultados revelaram um solo levemente ácido (pH 5,4), a saturação por bases foi de 32,29%. Diante dos resultados, identificou-se a <u>necessidade de corrigir a acidez</u> e <u>melhorar a fertilidade do solo.</u>

CORREÇÃO DA ACIDEZ COM CALCÁRIO

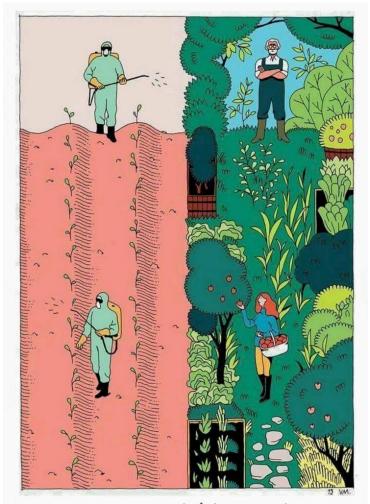
SUBSTRATOS

Resultados esperados

- Identificação do substrato mais eficaz para o crescimento das hortaliças, permitindo um cultivo mais sustentável e produtivo;
- Promoção da educação ambiental e o aprendizado prático dos alunos, capacitando-os para aplicar práticas sustentáveis em suas comunidades e contribuindo para a segurança alimentar e a valorização da agroecologia

Aplicabilidade dos resultados no cotidiano da sociedade

- Promoção da educação ambiental, alimentar e sustentabilidade entre os alunos;
- União da teoria e prática no cultivo de alimentos, incentivando hábitos saudáveis e ensinando práticas agroecológicas. A análise do solo e o uso de diferentes substratos, como calcário, torta de mamona e esterco bovino, demonstraram a importância da qualidade do solo. Esses resultados podem ser aplicados em hortas comunitárias, fortalecendo a segurança alimentar e a sustentabilidade.


Criatividade e inovação

- O projeto destaca-se pela integração de **criatividade**, **tecnologia e inovação** ao combinar biotecnologia e práticas agrícolas tradicionais. O uso do fungo *Trichoderma harzianum* como promotor de crescimento e agente de biocontrole substitui produtos químicos convencionais, demonstrando uma solução biológica sustentável.
- A análise de solo, utilizando técnicas como espectrofotometria, titulação e fotometria de chama, introduziu estudantes ao uso de métodos tradicionais e tecnologicos em agricultura, tornando-os agentes de transformação em suas comunidades.
- A experimentação com substratos sustentáveis, como torta de mamona e esterco bovino, explora recursos locais para otimizar a produtividade de hortaliças, mostrando como a inovação pode ser aplicada de forma ecológica e acessível.

Considerações finais

A implementação de uma horta agroecológica no ambiente escolar não apenas promove a educação ambiental e hábitos alimentares saudáveis, mas também serve como um espaço de aprendizado prático que fortalece a conexão entre os alunos e a natureza. A análise do solo é fundamental para garantir a eficácia da produção, possibilitando o uso responsável dos recursos e a maximização dos resultados. Dessa forma, a horta se torna um laboratório vivo, capacitando os estudantes a se tornarem cidadãos conscientes e agentes de transformação em suas comunidades, valorizando a sustentabilidade e a segurança alimentar.

Arte: Vincent Mahé (Fonte: https://outraspalavras.net/movimentoserebeldias/a-possivel-era-da-agroecologia/)

Agradecemos a Universidade do Estado de Minas Gerais (UEMG)-Frutal pela oportunidade, ao grupo de pesquisa NUPEEC, e a FAPEMIG pelas bolsas concedidas.

De 09 a 29 de novembro de 2024

Realização

Apoiadores

