

De 09 a 29 de novembro de 2024

Ciências Exatas e da Terra. **FEMIC JOVEM**

Mirela Luiza dos Santos


Maria Eduarda Cândida Silveira

Karla Teresa Ribeiro

Escola Estadual "Professor Pinheiro Campos"

Oliveira, Minas Gerais, Brasil

Modelagem Matemática Aplicada ao Controle do Escorpião Tityus serrulatus na cidade de Oliveira MG.

Apresentação

• Este projeto, através da modelagem matemática, visa auxiliar no desenvolvimento de estratégias para o controle populacional dos escorpiões, propondo à redução de sua incidência nas residências urbanas de Oliveira, MG, que apresenta frequentes relatos de escorpiões da espécie *Tityus serrulatus*.

Objetivos

Objetivo Geral

• Criar um modelo matemático que auxilie na previsão e controle populacional do escorpião Tityus serrulatus, a fim de desenvolver de uma possível solução para a incidência de escorpiões nas residências da área urbana do município de Oliveira (MG).

Objetivos Específicos

- Identificar as dimensões do problema de saúde pública em Oliveira (MG)
- Compreender o comportamento do escorpião Tityus serrulatus.
- Inserir os estudantes no mundo da pesquisa acadêmica, interligando conhecimentos escolares com a melhoria do ambiente local
- Elaborar um material educativo para divulgação do projeto e dos resultados alcançados para que estes possam contribuir efetivamente para a prevenção do escorpionismo em Oliveira

Metodologia

Revisão Bibliográfica

Leitura de textos científicos, com o objetivo de compreender a biologia, hábitos, e porque essa espécie de escorpião é um problema de saúde pública.

Estudo de casos

Estudar as ocorrências do escorpião no município de Oliveira, levando em conta suas regiões geográficas e as notificações de casos de escorpionismo nessas áreas.

Contato com Poder Público

Analisar informações atualizadas e oficializadas sobre a incidência de escorpiões, assim como as medidas aplicadas pelo setor público.

Metodologia

Fundamentar a criação do nosso próprio modelo de controle de crescimento populacional do Tityus serrulatus em Oliveira (MG).

Divulgação

Elaborar uma cartilha informativa e utilizar plataformas digitais para disseminar conhecimento de maneira clara e acessível na comunidade.

Resultados alcançados

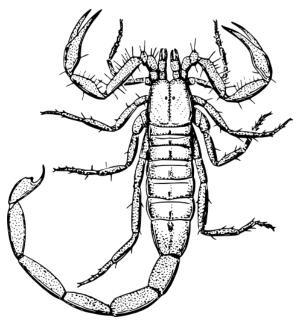
- Identificação de padrões de comportamento e reprodução do *Tityus serrulatus*.
- Criação de uma página de divulgação no instagram (@iceb.eeppc) e de uma cartilha.
- O projeto foi levado para Câmara Municipal de Oliveira MG, e apoiado pelos constituintes da mesa.
- Desenvolvimento de um modelo matemático eficaz, e sugestão da busca ativa com a luz.

Estudantes desenvolvem projeto sobre o escorpião amarelo

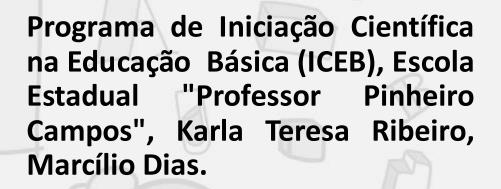
WWW.GAZETADEMINAS.COM.BF

Aplicabilidade dos resultados no cotidiano da sociedade

- O projeto escolheu essa área de trabalho devido as incidências do Tityus serrulatus nas residências urbanas de Oliveira, MG.
- Além da criação de um modelo matemático que prevê o crescimento populacional dos escorpiões, o projeto se engajou ao buscar soluções para diminuir a incidência do aracnídeo, como a busca ativa com o auxílio de lanternas uv. Além disso, foi elaborada uma cartilha para a divulgação de conhecimento que será distribuída pelos estudantes pesquisadores.


Criatividade e inovação

- Implementação da luz ultravioleta como ferramenta de busca ativa.
- Utilização de um modelo matemático para prever a população e analisar a eficácia da busca ativa com luz uv.
- Baixo custo e acessibilidade.


$$\begin{cases} \frac{dN_1}{dt} = 3.5N_1 \left(1 - \frac{N_1}{1000} \right) \\ \frac{dN_2}{dt} = 3.5N_2 \left(1 - \frac{N_2}{1000} \right) - bPN_2 \end{cases}$$

Contideraçõet finait

• O modelo desenvolvido demonstra que a busca ativa com luz ultravioleta pode reduzir significativamente a população escorpiões, prevenindo surtos e diminuindo riscos. Ao combinar essa técnica com um modelo matemático robusto, fortalece-se o controle e a base científica para decisões e políticas de saúde pública. Embora heurístico, o modelo é eficaz, promovendo controle simples e de baixo custo, mantendo o equilíbrio ecológico. Além disso, a experiência permite que estudantes do Ensino Médio desenvolvam habilidades de pesquisa, conectando teoria e prática e estimulando o interesse por biologia e matemática.

De 09 a 29 de novembro de 2024

Realização

Apoiadores

