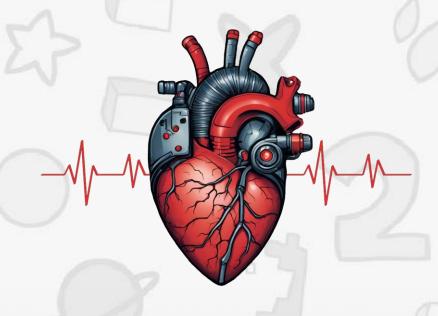


De 09 a 29 de novembro de 2024

ENGENHARIAS FEMIC JOVEM

Gabrielly Victoria Broggio Ana Clara Broggio Caciola


Maressa Pomaro Casali Pereira

Interativo Curso e Colégio

São Carlos, SP - Brasil

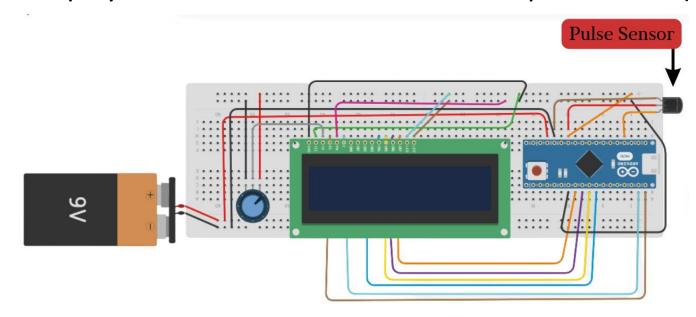
SOLUÇÃO DE BAIXO CUSTO PARA O MONITORAMENTO DE BATIMENTOS CARDÍACOS, USANDO SENSOR E ARDUINO NANO

INTERABOTS

Apresentação

- A endocardite é uma condição cardiovascular complexa e grave, caracterizada pela inflamação do endocárdio. Os sintomas incluem: febre, fadiga, dificuldade na respiração, alterações na auscultação cardíaca e batimentos cardíacos elevados (LIMA et al., 2024). Essa condição pode ser similar a outras doenças e, por isso, são necessários testes mais precisos e monitoramento.
- Atualmente no Brasil, 15,3% das pessoas com 60 anos ou mais moram sozinhas (ANTUNES, 2018). Assim, o desenvolvimento de aplicativos e protótipos seria útil no monitoramento de eventos associados às cardiopatias e limitações pela idade avançada.

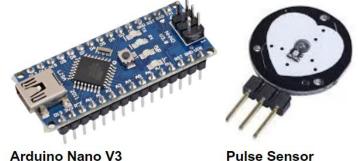
Objetivos



- **GERAL:** Diante disso, o trabalho teve como objetivo principal o desenvolvimento de um protótipo, a partir da plataforma Arduino, tendo como possível aplicação em um contexto de pós tratamento de pacientes acometidos por cardiopatias, como a endocardite.
- **ESPECÍFICOS:** Como objetivo específico, almejou-se associar o protótipo à um sensor de batimento cardíaco e testá-lo em variadas condições. O desenvolvimento de um protótipo capaz de aferir a frequência cardíaca permite monitorar pessoas, acometidas por cardiopatias, em situação de pós operatório, incluindo idosos.

Metodologia

• O protótipo foi construído com o auxílio de uma plataforma de prototipagem eletrônica Arduino Nano V3 e um sensor (Pulse Sensor), no qual a frequência cardíaca é exibida em um display LCD em termos de batimentos por minuto (BPM).


Esquema de montagem do protótipo.

Metodologia

- Pulse Sensor: Componente usado para medir a frequência cardíaca, que funciona emitindo luz (led verde) que penetra na pele. O sensor detecta a luz refletida, que varia com o fluxo sanguíneo, e envia um sinal analógico ao Arduino. O Arduino processa esse sinal, detecta os picos e calcula a frequência cardíaca em batimentos por minuto (BPM).
- Arduino Nano V3: Atua como o componente central no projeto, agindo como o "cérebro" do protótipo. Ele é responsável por ler os sinais analógicos, processar os dados para identificar os batimentos cardíacos, calcular a frequência cardíaca e enviá-la ao display.

Principais componentes utilizados na construção do protótipo.

Pulse Sensor

Display LCD 16X2 JHD-162A

Resultados alcançados

Coleta de Dados - Frequência Cardíaca

Classificação	Sexo Biológico		Faixa Etária			Danauga	Dác Tuoine	Vostibulando	Caudianatia
	Feminino	Masculino	Criança	Jovem	Idoso	Repouso	Pós-Treino	Vestibulando	Cardiopatia
Variáveis	16 anos	16 anos	Idade: 11 Gênero: Feminino	Idade: 19 Gênero: Feminino	Idade: 78 Gênero: Masculino	ldade: 27 Gênero: Masculino	Idade: 12 Gênero: Masculino	Idade: 18 Gênero: Feminino	Idade: 68 Gênero: Feminino
Monitoramento "às cegas"	1° 73 2° 72 3° 73 Média: 73	1° 79 2° 80 3° 78 Média: 79	1° 96 2° 92 3° 91 Média: 93	1° 77 2° 76 3° 78 Média: 77	1° 54 2° 53 3° 55 Média: 54	1° 77 2° 76 3° 78 Média: 77	1° 110 2° 109 3° 116 Média: 112	1° 90 2° 88 3° 91 Média: 89	1° 72 2° 75 3° 81 Média: 76
Monitorado pela pessoa	1° 105 2° 97 3° 93 Média: 98	1° 73 2° 74 3° 75 Média: 74	1° 92 99 2° 86 100 3° 97 98 Média: 95	1° 81 2° 84 3° 88 Média: 84	1° 55 2° 54 3° 54 Média: 54	1° 82 2° 81 3° 83 Média: 82	1° 116 2° 105 3° 113 Média: 111	1° 97 2° 96 3° 94 Média: 96	1° 71 2° 72 3° 74 Média: 72

Dados de frequência dos batimentos cardíacos aferidos pelo protótipo. Condição e réplicas.

Resultados alcançados

Coleta de Dados - Frequência Cardíaca

Categori	as	Variáveis	Monitoramento "às cegas"	Monitorado pela pessoa				
Sexo Biológico	Feminino	Idade: 16	73 BPM	98 BPM				
Dexo Biologico	Masculino	Idade: 16	79 BPM	74 BPM				
	Criança	Idade: 11 Gênero: Feminino	93 BPM	95 BPM				
Faixa Etária	Jovem	Idade: 19 Gênero: Feminino	77 BPM	84 BPM				
	Idoso	Idade: 78 Gênero: Masculino	54 BPM	54 BPM				
Repous	60	Idade: 27 Gênero: Masculino	77 BPM	82 BPM				
Pós-Trei	no	Idade: 12 Gênero: Masculino	112 BPM	111 BPM				
Vestibula	ndo	Idade: 18 Gênero: Feminino	89 BPM	96 BPM				
Cardiopa	ntia	Idade: 68 Gênero: Feminino	76 BPM	72 BPM				

Dados de frequência dos batimentos cardíacos aferidos pelo protótipo. Condição e réplicas.

Os dados foram registrados em diferentes condições, permitindo uma análise das variações nos batimentos cardíacos em resposta a fatores como sexo, faixa etária, atividade física, repouso, nível de ansiedade e presença de cardiopatias.

Aplicabilidade dos resultados no cotidiano da sociedade

- Diante do aumento de incidências de cardiopatias na população, torna-se relevante a busca por soluções que promovam o monitoramento cardíaco.
- O dispositivo é capaz de monitorar a frequência cardíaca em tempo real, auxiliando as pessoas a acompanharem sua saúde cardiovascular. Isso é especialmente útil para idosos ou indivíduos com condições cardíacas.
- Além disso, oferece uma solução de baixo custo, aumentando a acessibilidade à tecnologia.

Criatividade e inovação


- Com componentes acessíveis como Arduino Nano e Pulse Sensor, o protótipo oferece uma solução de baixo custo, aumentando a acessibilidade à tecnologia.
- Além disso, destaca-se como um projeto multidisciplinar, abrangendo áreas como eletrônica, programação, robótica e biologia, e contribuindo para a compreensão de cardiopatias e sua relação com a saúde cardiovascular.

Considerações finais

- O sistema desenvolvido para a aferição dos batimentos cardíacos demonstrou eficácia, apresentando resultados consistentes em comparação com dispositivos padrão.
- Visando às etapas futuras, espera-se implementar o protótipo, considerando que há potencial para expandi-lo, incluindo funcionalidades como monitoramento em tempo real via aplicativo e integração com outros sensores.

Agradecemos ao Centro de Robótica da USP/São Carlos e ao Grupo SEMEAR da USP/São Carlos pela visita técnica, às professoras de Robótica do colégio Giovana Bertolino e Beatriz Pires pelo apoio e ao Colégio Interativo por tornar possível este projeto.

De 09 a 29 de novembro de 2024

Realização

Apoiadores

