

De 09 a 29 de novembro de 2024

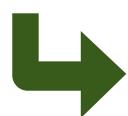
ENGENHARIAS FEMIC JOVEM

Laura de Paula Rosa Maria Cecília Wunder de Oliveira Vitória Simão Vernizi Amanda de Souza Maloste

> Colégio Sesi Boqueirão Curitiba, Paraná, Brasil

ECOPLASF - Uso de resíduos descartados incorretamente para melhoria das pavimentações asfálticas - Fase II

Apresentação



A EXPLORAÇÃO DE PETRÓLEO É A SEGUNDA ATIVIDADE QUE MAIS EMITE GASES DE EFEITO ESTUFA NO PLANETA.

RESÍDUOS DE ALTO TEMPO DE DECOMPOSIÇÃO SÃO DERIVADOS DO PETRÓLEO.

FONTE: Recicla Sampa, 2024 e Ekko Green, 2022

ASFALTO COMUM TAMBÉM É DERIVADO DE PETRÓLEO.

FONTE: Globo, 2023.

Apresentação

FONTE: Recicla Smapa, 2024 e Ekko Green, 2022 CONSTRUÇÃO CIVIL.

PRODUÇÃO DE PAVERS

FONTE: Vogelsanger, 2021.

CIMENTO É RESPONSÁVEL POR LANÇAR 8% DOS GASES DO EFEITO ESTUFA.

PRODUZIR UMA TONELADA DE CIMENTO LIBERA QUASE UMA TONELADA DE CO2.

Objetivos

GERAL

REUTILIZAR RESÍDUOS QUE SE TORNARIAM LIXO NO MEIO AMBIENTE PARA PRODUZIR PAVERS SUSTETÁVEIS E PREENCHER BURACOS NAS RUAS

PROPOR UMA MANEIRA DE MINIMIZAR
O USO DE CIMENTO NA CONSTRUÇÃO
CIVIL PARA DIMINUIR OS GASES DO
EFEITO ESTUFA.

IDENTIFICAR A RESISTÊNCIA DE MATERIAS DO PLÁSTICO, ISOPOR, VIDRO E FIBRA DE COCO.

VERIFICAR AS APLICABILIDADES DA MISTURA DO POLÍMERO SINTÉTICO COM AS FIBRAS DE COCO EM RELAÇÃO A RESISTÊNCIA E DURABILIDADE DO MATERIAL

Etapas da realização da segunda fase do projeto:

FONTE: Própria autoria, 2023.

COLETA DOS RESÍDUOS

PRODUÇÃO DOS PROTÓTIPOS

TESTES REALIZADOS NA FASE I

A fim de testar a eficiência da massa produzida

PRODUÇÃO PAVER

IMPERMEABILIZAÇÃO DO PAVER

D-Limoneno (ATÓXICO)

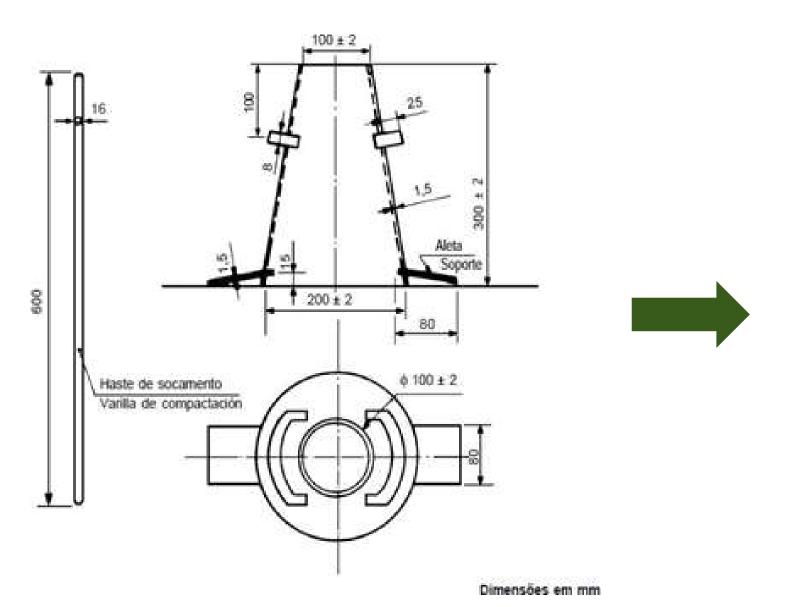
FONTE: Dimclay, 2024

PRODUTO FINAL

FONTE: Autoria própria, 2024

EMIC

TESTES = ENSAIO DE COMPRESSÃO



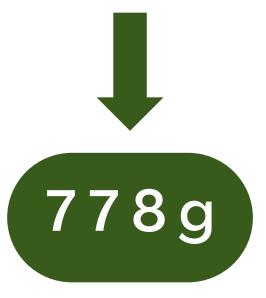
ADAPTAÇÃO DO ENSAIO DE SLUMP

Fonte: Comitê Brasileiro de Cimento, Concreto e Agregados, 1998.

FONTE: Autoria própria, 2024.

ADAPTAÇÃO DA PRENSA DE MARSHALL

DETERMINAÇÃO DA ABSORÇÃO DA


ÂGUA POR IMERSÃO NBR 9778

FONTE: Autoria própria, 2024

MASSA INICIAL DO PAVER

Resultados alcançados

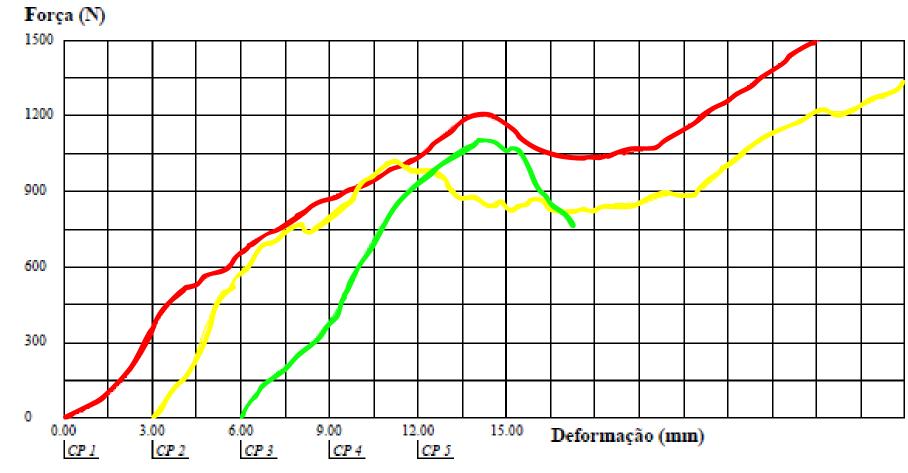

TESTES-ENSAIO DE COMPRESSÃO

Gráfico 1 - Fase 1

Força (kgf) 960 720 480 240 0.000 12.00 24.00 36.00 48.00 60.00 Deformação (mm)

Gráfico 2 - Fase 2

1 Isopor® + Thinner® 597.88 Kgf

Isopor® + Thinner® + Vidro 872.12 Kgf

Corpo de Diâmetro Força @Força Max. Prova (mm) 494.55 110543 52.00CP 1 54.00 500.07 93581 CP 2 112.75 101477 50.00 CP 3

2 Isopor® + Thinner® + Areia 540.04 Kgf

FONTE: Própria autoria, 2024.

Resultados alcançados

ADAPTAÇÃO DO ENSAIO DE SLUMP

NÃO OBTEVE ALTERAÇÃO VISUAL.

DETERMINAÇÃO DA ABSORÇÃO DA ÁGUA POR IMERSÃO NBR 9778

HOUVE UM AUMENTO DE 25% DE MASSA, DEMOSTRANDO CARACTERÍSTICAS DE UM MATERIAL PERMEÁVEL.

PRENSA DE MARSHALL

NÃO OBTEVE ALTERAÇÃO VISUAL.

Aplicabilidade dos resultados no cotidiano da sociedade

CUSTO PARA PRODUÇÃO

Paver

 m^2

A p r o x i m a d a m e n t e R \$

50,00

Paver
Ecoplasf

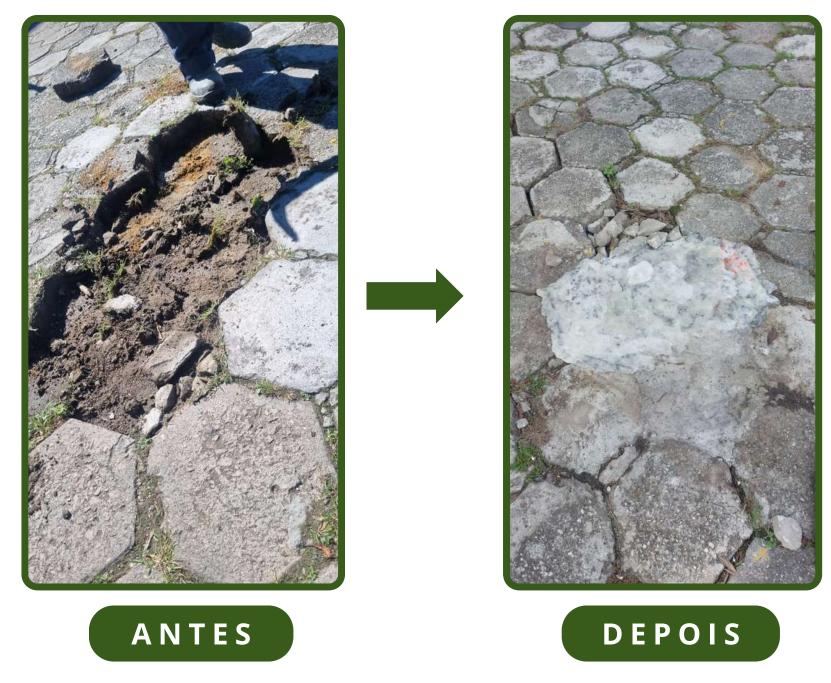
m²

R\$1,02

CUSTO PARA APLICAÇÃO EM GRANDE ESCALA

km²

R\$1020,00


Aplicabilidade dos resultados no cotidiano da sociedade

APLICAÇÃO EM ESCALA REAL

SOLUÇÃO PARA O
DESNIVELAMENTO DAS
LAJOTAS NO
ESTACIONAMENTO DO
COLÉGIO SESI
BOQUEIRÃO.

Criatividade e inovação

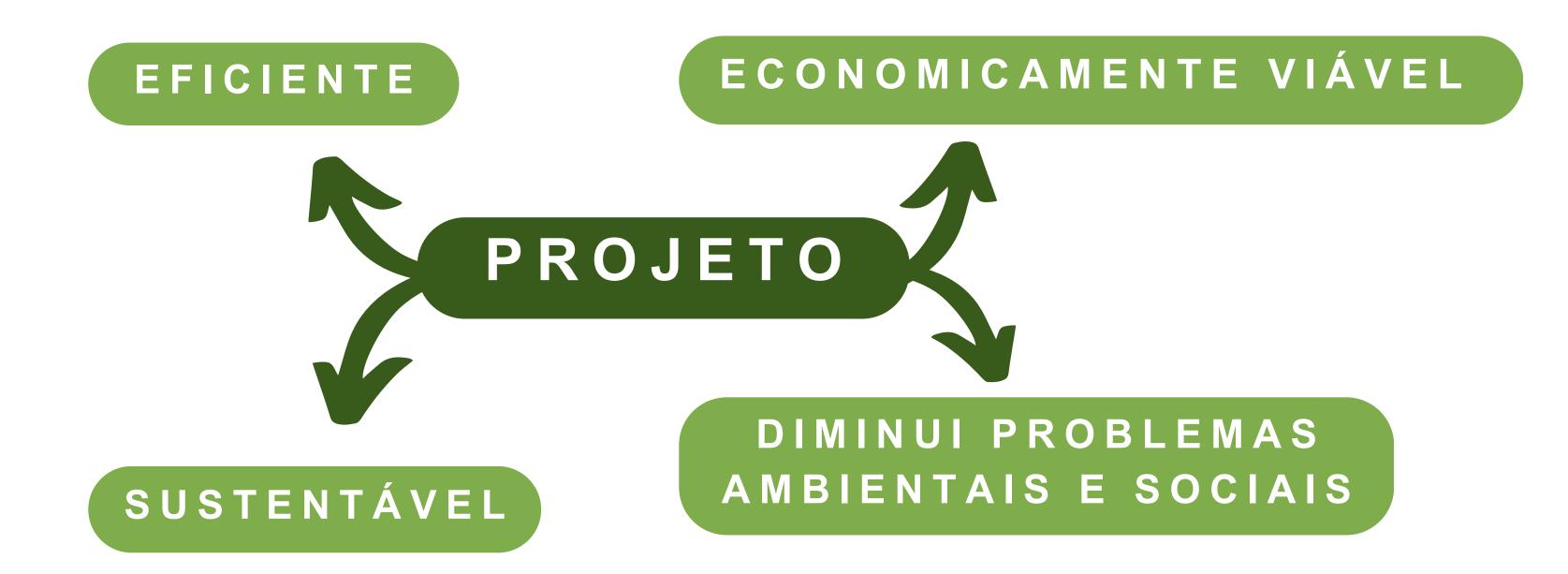
VIABILIDADE NA INDÚSTRIA

MASSA PAVER - 2,6 kg

TRANSPORTE + CARO PAVER ECOPLASF - 778g

TRANSPORTE + BARATO

- GASES PARA O
EFEITO ESTUFA



+ GASES PARA O EFEITO ESTUFA

Considerações finais

Um agradecimento aos pais, a coordenação do colégio, aos professores e aos familiares pelo apoio em tantos momentos.

De 09 a 29 de novembro de 2024

Realização

Apoiadores

