

De 09 a 29 de novembro de 2024

FEMIC JOVEM

ID do projeto: 2024-1996.jovem

Amanda Sophya da Silva Souza Maria Vanielly Sousa de Oliveira Thaissa Gabrielly de Lima Alves

Augusto César de Oliveira Corrêa dos Anjos Lennon Martins Pereira

Escola Municipal de Ensino Fundamental Prof. Abel Martins e Silva Distrito de Mosqueiro - Belém/PA - Brasil

Projeto: "Robótica Sustentável na Escola Abel Martins: Reutilizar, Produzir e Aprender".

Apresentação

- O Projeto "Robótica Sustentável na Escola Abel Martins: Reutilizar, Produzir e Aprender" é uma iniciativa inovadora na Rede Municipal de Ensino de Belém, que une tecnologia, criatividade, educação ambiental e a sustentabilidade na Ilha de Mosqueiro, Distrito Administrativo de Belém.
- Diante dos diversos desafios ambientais, particularmente do descarte irregular do lixo nas praias, praças, na escola, avenidas, surgiu o Projeto como uma proposta educativa, que valoriza a cultura local por meio da Metodologia STEAM, onde os estudantes são protagonistas na busca de conhecimento e soluções para os problemas cotidianos, tornando-se agentes criativos e comprometidos com a melhoria da qualidade de vida na Ilha de Mosqueiro.

Objetivos

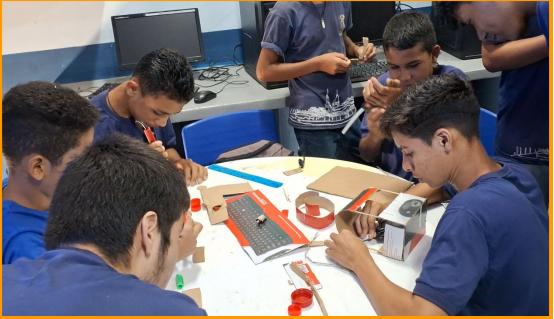
 Geral: Compreender a importância da Educação Ambiental e da valorização da Cultura Local por meio da Robótica Sustentável a partir da construção de protótipos de veículos produzidos com materiais reaproveitados e de baixo custo.

Específicos:

- Construir protótipos de materiais reaproveitáveis e de baixo custo;
- Analisar os materiais envolvidos na criação do protótipo;
- Projetar e construir um robô relacionado à cultura local, utilizando materiais recicláveis, como papelão, plástico reciclado e outros materiais disponíveis.

Etapa 1: Sensibilização e Conscientização

 Ocorreu por meio de palestra para a comunidade escolar e estudo de casos de sucesso.



Etapa 2: Desenvolvimento de Protótipos Sustentáveis

 Ocorreu a construção de protótipos utilizando materiais reaproveitáveis e de baixo custo, incentivando a criatividade e o trabalho em equipe.

Etapa 3: Análise e Avaliação dos Protótipos

Nesta etapa, verificamos que era possível criar um protótipo de uma "cobra robô", a "Snake Robot", para, assim, valorizar a nossa Cultura Local, relacionado a "Lenda da Cobra Grande de Mosqueiro" com o que já estávamos estudando sobre Educação Ambiental e Sustentabilidade.

Etapa 4: Apresentação e Reflexão

Nessa última etapa, apresentamos nossos protótipos à comunidade escolar, na Mostra de Inovação da Prefeitura de Belém, na Mostra de Ciência e Tecnologia do Instituto Açaí, na 79º Reunião Anual da SBPC e na Feira Pan Amazônica do Livro.

Ao longo da implementação do Projeto obtivemos resultados significativos, tanto no aspecto pedagógico quanto no desenvolvimento de competências dos estudantes, dos quais podemos considerar:

1. Engajamento e Participação Discente

O Projeto envolveu alunos do 6º ao 9º ano e obteve uma adesão satisfatória, com a maioria demonstrando interesse em participar das atividades propostas.

2. Desenvolvimento de Competências Técnicas e Cognitivas

Os discentes demonstraram progresso em habilidades técnicas ligadas à eletrônica e engenharia básica, automação, programação e raciocínio lógico aplicadas na construção dos protótipos robóticos utilizando materiais reutilizáveis. A escolha por tecnologias sustentáveis desafiou os alunos a pensar em soluções alternativas, ampliando suas capacidades de resolução de problemas e o pensamento crítico.

3. Sensibilização Ambiental e Práticas Sustentáveis

A proposta de trabalhar com robótica sustentável foi muito positiva, sensibilizando os estudantes para questões ambientais importantes, como a do descarte irregular de lixo que, na maioria da vezes, pode ser reaproveitado.

Com isso, houve um envolvimento maior na produção de soluções inovadoras, despertando a criatividade e a criticidade diante dos problemas ambientais locais.

4. Colaboração e Trabalho em Equipe

O trabalho em equipe foi uma das habilidades mais desenvolvidas ao longo do Projeto. A construção de protótipos exigiu que os alunos atuassem de maneira colaborativa, compartilhando responsabilidades e ideias. Contudo, em alguns grupos, houve dificuldade inicial em estabelecer uma dinâmica produtiva, o que gerou conflitos pontuais que precisaram ser mediados pela equipe docente. Com o tempo, a maioria dos grupos conseguiu alinhar seus processos de trabalho, resultando em uma produção mais eficiente.

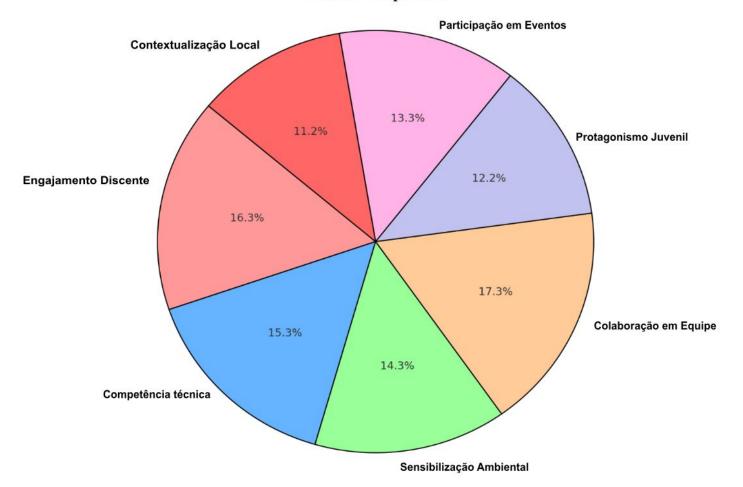
5. Inclusão do Protagonismo Feminino

Outro resultado positivo foi a participação das estudantes no Projeto, reforçando a necessidade de promover a equidade de gênero em áreas técnicas e tecnológicas. A presença de meninas nos grupos foi significativa e desafiou as concepções tradicionais sobre a participação feminina em projetos de robótica. Entretanto, algumas barreiras culturais e sociais ainda foram perceptíveis, com estudantes inicialmente hesitantes em assumir papéis de liderança nas equipes. A coordenação do Projeto precisou intervir ativamente para incentivar maior autonomia e protagonismo dessas meninas.

6. Participação em Eventos Científicos

A participação em Eventos Científicos foi outro oportunidade importante nessa jornada, entre elas: a "Mostra de Inovação e Tecnologia em Educação - MITE" da Secretaria Municipal de Educação - SEMEC/Belém", da "Mostra de Ciência e Tecnologia do Instituto Açaí - MCTIA - MCTEA", da "76° Reunião Anual da Sociedade Brasileira para o Progresso da Ciência (SBPC) - Universidade Federal do Pará - UFPA", da "27ª Feira Pan Amazônica do Livro e das Multi Vozes", "Torneio de Robótica Regional promovido pelo SESI Belém - FLL Regional 2023. Além do reconhecimento pessoal, houve o reconhecimento das ações desenvolvidas pela Escola Abel Martins e Silva na Rede Municipal de Ensino.

7. Contextualização com a Realidade Local


Foi relevante associar a robótica ao contexto cultural e ambiental de Belém do Pará, particularmente da Ilha de Mosqueiro. Embora essa abordagem tenha sido bem recebida pelos estudantes, o processo de adaptação das atividades tecnológicas à realidade local foi desafiador, principalmente devido à necessidade de conciliar o uso de materiais recicláveis com a criação de soluções tecnológicas funcionais.

7. Contextualização com a Realidade Local

Foi relevante associar a robótica ao contexto cultural e ambiental de Belém do Pará, particularmente da Ilha de Mosqueiro. Embora essa abordagem tenha sido bem recebida pelos estudantes, o processo de adaptação das atividades tecnológicas à realidade local foi desafiador, principalmente devido à necessidade de conciliar o uso de materiais recicláveis com a criação de soluções tecnológicas funcionais.

Resultado do Projeto "Robótica Sustentável na Escola Abel Martins: Reutilizar, Produzir e Aprender".

Resultados Alcançados:

Engajamento Discente (80%)

Competências Técnicas (75%)

Sensibilização Ambiental (70%)

Colaboração em Equipe (85%)

Protagonismo Feminino (60%)

Participação em Eventos (65%)

Contextualização Local (55%)

Aplicabilidade dos resultados no cotidiano da sociedade

Dentre as aplicabilidades, podemos destacar:

• A contribuição para a solução do lixo eletrônico e outros descartados irregularmente no meio ambiente, pois vimos que podemos transformá-los em protótipos de robôs, utilizando baterias descartadas de notebook, papelão, motores de drive de cd/dvd, isopor, garrafas pet, etc., que desperta em nós a consciência ambiental, a resolução de problemas, o trabalho colaborativo, o empreendedorismo, além das habilidades em programação, engenharia, eletrônica e a popularização da ciência e tecnologia, especialmente entre as meninas.

Criatividade e inovação

• No decorrer do Projeto, tivemos a oportunidade de participar do Torneio de Robótica do SESI e fomos provocados à ir além dos protótipos de carrinhos elétricos. Assim, surgiu a proposta inovadora e criativa de aproveitar o que já fazíamos para criar uma "cobra robótica" que nos auxiliasse a preservar a cultura e arte de contar histórias locais. Nesse caso, a "Lenda da Cobra Grande da Fábrica Bittar". Foi a partir de então que surgiu a "Snake Robot". (Ver o vídeo)

Considerações finais

- A proposta inicial, começou com a simples ideia de reutilizar materiais descartados, muitos no lixo, para a construção de protótipos simples feitos na escola em nossa Sala de informática, trabalhando meio ambiente e tecnologia.
- Ao longo do projeto, percebemos um aumento no interesse dos estudantes, especialmente das meninas, por áreas ligadas à ciência e à engenharia.
- Como fruto também, o projeto motivou a participação da equipe em outras ações como Torneio de Robótica e Mostra de Ciência e Tecnologia do Instituto Açai-MCTIA.

De 09 a 29 de novembro de 2024

Realização

Apoiadores

