ESCOLA SESI DE EDUCAÇÃO BÁSICA INDUSTRIAL ABELARDO LOPES ENSINO MÉDIO

SUSTENTEX: Utilização da Fibra de Coco e Rede de Pesca Reciclada na Produção de um Tecido Sustentável.

Joane Karine Silva dos Santos Carvalho de Melo Karen Adriele dos Santos Lins Maiarah de Vasconcelos Passos Santos Rodrigues

Helena Karine de Barros Acioli Laila Isis Costa Lima

SUSTENTEX: Utilização da Fibra de Coco e Rede de Pesca Reciclada na Produção de um Tecido Sustentável.

Relatório apresentado à 8ª FEMIC - Feira Mineira de Iniciação Científica.

Orientação do Prof. Laila Isis Costa Lima e coorientação de Helena Karine Barros Acioli

Maceió, AL 2024

RESUMO

A indústria têxtil está em constante expansão, abrangendo toda a economia mundial e impactando o varejo, design e logística. Com isso, a desintegração dos tecidos resulta na liberação de microfilamentos de fibras sintéticas, que uma vez no oceano, são difíceis de serem removidos e impactam a vida marinha, principalmente microrganismos e pequenos animais.

Diante dessa problemática, o presente projeto tem como objetivo geral o desenvolvimento de um tecido sustentável, robusto e economicamente viável, utilizando materiais reutilizáveis, como redes de pesca recicladas e fibras de coco. Esta iniciativa visa mitigar os impactos ambientais associados à indústria têxtil e promover práticas sustentáveis. O nome da solução proposta é "Desenvolvimento de um Tecido Sustentável a partir da fibra de coco e rede de pesca", direcionando-se a um público-alvo que inclui empresas de moda sustentável e ecológica, além de consumidores conscientes em busca de produtos que priorizam a sustentabilidade.

Para a execução deste projeto, foi realizada uma revisão bibliográfica para a coleta de informações sobre os materiais selecionados. A metodologia inclui a coleta das redes de pesca e das fibras de coco, seguida da separação dos contaminantes. Posteriormente, os materiais passaram por um processo de limpeza e pré-tratamento para a remoção de impurezas. A produção de fios e a tecelagem serão as etapas subsequentes. Por fim, a pesquisa incluirá testes de resistência, força e durabilidade do tecido, com o intuito de desenvolver um produto que não apenas atenda às exigências do mercado, mas também contribua para a preservação ambiental.

Palavras-chave: Tecido, fibra de coco, rede de pesca, sustentabilidade.

SUMÁRIO

1 INTRODUÇÃO	5
2 JUSTIFICATIVA	6
3 OBJETIVO GERAL	8
4 METODOLOGIA	9
5 RESULTADOS OBTIDOS	13
6 CONSIDERAÇÕES FINAIS	15
REFERÊNCIAS	17

1 INTRODUÇÃO

A indústria têxtil é uma das principais responsáveis pela poluição ambiental, contribuindo com cerca de 10% das emissões globais de carbono. O ciclo de vida das roupas envolve o uso excessivo de água, produtos químicos tóxicos e energia, além de gerar grandes quantidades de resíduos. A produção em massa e a cultura do "fast fashion" intensificam esses problemas, resultando em um descarte acelerado de peças e na contaminação de solos e águas. Essa realidade exige uma abordagem urgente para reduzir o impacto ambiental e promover práticas mais sustentáveis.

Diversas iniciativas têm sido adotadas para minimizar os efeitos da poluição gerada pela indústria têxtil. As marcas estão investindo em moda sustentável, utilizando materiais reciclados e orgânicos, enquanto a produção ética garante condições de trabalho justas. Programas de reciclagem e reutilização de roupas são promovidos para reduzir o desperdício, e inovações tecnológicas buscam economizar água e energia. No entanto, essas práticas ainda não são amplamente adotadas por toda a indústria.

Em resposta a essa problemática, apresentamos uma solução inovadora: a produção de tecido sustentável utilizando coco verde e redes de pesca utilizadas. Essa abordagem oferece várias vantagens. Ao usar materiais naturais, eliminamos a necessidade de corantes químicos, contribuindo para a redução da contaminação ambiental. Além disso, a utilização de redes de pesca descartadas transforma um problema ambiental em um recurso valioso, reduzindo a quantidade de resíduos plásticos nos oceanos. O coco verde, por sua vez, é um material abundante e renovável, minimizando a exploração de recursos naturais limitados.

Nossa solução não apenas contribui para a diminuição da poluição gerada pela indústria têxtil, mas também promove uma cultura de consumo consciente. Ao educar os consumidores sobre a importância da sustentabilidade e do uso de materiais alternativos, incentivamos uma mudança de comportamento em relação ao consumo de moda.

A crise ambiental da indústria têxtil demanda soluções inovadoras. Nossa proposta de tecido sustentável, feita com coco verde e redes de pesca utilizadas, é um passo importante nessa direção. Ao unir estilo e responsabilidade ambiental, promovemos uma moda ética e sustentável, beneficiando o meio ambiente e as comunidades envolvidas na produção. Essa abordagem atende à demanda por produtos sustentáveis e contribui para um futuro mais responsável na indústria têxtil.

2 JUSTIFICATIVA

Os impactos ambientais gerados pela indústria têxtil no oceano são pouco conhecidos pela população, porém, é um problema emergente por decorrência do consumo de tecidos em nosso planeta, afetando assim o nosso ecossistema marinho, principalmente os microrganismos e pequenos animais que ali vivem, visto que grande parte do tecido se desintegra, gerando microfilamentos de fibras sintéticas. Assim, visando melhorias no nosso planeta, motivou-se a busca por possibilidades para minimizar esses impactos causados pela indústria têxtil. Por este motivo, se justifica a necessidade da criação de alternativas sustentáveis que visam a diminuição do impacto gerado nos oceanos, reduzindo a quantidade de micro plásticos.

De acordo com Pereira, Romeiro Filho e Mendonça (2021), analisando o cenário ambiental, é essencial destacar que a presença de microfibras plásticas no oceano é um problema complexo que demanda soluções urgentes. Recentes pesquisas demonstraram que uma das fontes dessas ínfimas partículas está associada aos tecidos sintéticos destinados à confecção de roupas. Recolhê-las dos ambientes aquáticos é uma tarefa praticamente impossível. As soluções, por hora, dependem de ações que minimizem as emissões destas partículas. Segundo Gomes (2021), a poluição marinha tem sido motivo de preocupação de toda sociedade mundial. Pesquisas recentes mostram que 46% dos resíduos plásticos presentes nos oceanos são provenientes das redes utilizadas pela pesca não sustentável, esses rejeitos e outras ações da sobrepesca causam impactos ambientais e sociais, como a extinção de comunidades marítimas e diminuição dos alimentos nos mercados litorâneos. Atividades de pesca excessiva trazem um descarte grandioso de plástico, destacando as redes de pesca.

Estima-se que materiais como redes, linhas e armadilhas abandonadas, constituem grande parte do resíduo plástico encontrado no fundo do mar. No cenário contemporâneo, a busca por soluções sustentáveis tem ganhado cada vez mais relevância. Nesse contexto, o presente projeto busca desenvolver um tecido ecológico e sustentável utilizando de forma inovadora matérias como fibra de coco (Cocos nucifera) e redes de pesca, materiais estes que serão utilizados por meio da reciclagem dos produtos para produção do tecido, contribuindo para a diminuição de fibras sintéticas no ambiente marinho e minimizando o uso de tecidos convencionais. A combinação da fibra de coco e rede de pesca emerge como uma promissora alternativa na produção de tecidos sustentáveis. A fibra de coco, proveniente do descarte das cascas de coco, é um material abundante e renovável; sua resistência natural e durabilidade a tornam uma escolha ideal para a fabricação de tecidos, associada à rede de pesca, que muitas vezes é descartada após o uso, essa combinação potencializa os aspectos sustentáveis do produto.

O resultado é um tecido versátil, resistente e ecologicamente correto, adequado para uma variedade de aplicações, desde moda até decoração e produtos industriais. Sua textura única e propriedades naturais conferem um apelo estético e funcional, agregando valor aos produtos. O projeto está alinhado com diversos Objetivos de Desenvolvimento Sustentável (ODS) da ONU, incluindo o ODS 12 (Consumo e Produção Sustentáveis), ao promover o uso responsável de recursos naturais e a redução do desperdício, e o ODS 14 (Vida na Água), ao abordar a questão da poluição marinha e da conservação dos ecossistemas costeiros. Além disso, a iniciativa pode ter um impacto positivo nas comunidades locais, gerando empregos em setores relacionados à coleta, processamento e produção dos materiais. Isso não apenas fortalece a economia local, mas também promove o desenvolvimento de habilidades e conhecimentos em práticas sustentáveis.

Desenvolver um projeto desse tipo envolve identificar uma oportunidade de mercado e criar uma solução inovadora para atendê-la. Os projetistas envolvidos têm a oportunidade de exercitar sua autonomia ao liderar o desenvolvimento desde a concepção até a implementação. Os bolsistas podem tomar decisões sobre o design, os materiais a serem usados, as estratégias de produção e comercialização, entre outros aspectos do projeto. O uso de materiais reciclados, como rede de pesca e fibra do coco,

para criar tecidos sustentáveis e rentáveis é inovador e demonstra um compromisso com a sustentabilidade ambiental. Os estudantes envolvidos neste projeto terão a chance de explorar novas tecnologias, processos de fabricação e modelos de negócios que agregam valor tanto do ponto de vista ambiental quanto econômico.

3 OBJETIVOS

3.1 Objetivo geral

Desenvolver um tecido robusto, duradouro e economicamente viável, empregando materiais reutilizáveis, tais como rede de pesca reciclada e fibra de coco, com o intuito de mitigar o impacto ambiental e fomentar práticas sustentáveis.

3.2 Objetivos específicos

- Identificar as propriedades físicas e químicas da rede de pesca reciclada e da fibra de coco.
- Descrever métodos eficientes e sustentáveis para transformar a rede de pesca reciclada e a fibra de coco em fios.
- Analisar a Sustentabilidade do Processo de Produção.
- Testar a Viabilidade de um produto resistente e durável.

4 METODOLOGIA

Para a realização deste projeto, será necessário a execução de pesquisas bibliográficas para a coleta de informações sobre os materiais utilizados. Sabe-se que o estudo científico apresenta várias modalidades, sendo uma delas a documental a ser abordada no presente projeto, expondo as etapas que devem entender e investigar sobre as propriedades físicas e químicas da rede de pesca reciclada e da fibra de coco, para tal, utilizaremos dados extraídos de artigos científicos e sites como: Scielo, BDTD e google acadêmico. A pesquisa bibliográfica nos auxilia desde o início, pois é realizada com o intuito de identificar se já existe um trabalho científico sobre o assunto da pesquisa a ser realizada, colaborando na escolha do problema e de um método adequado, tudo isso é possível baseando-se nos trabalhos já publicados.

Assim, buscaram-se no campo do conhecimento as principais referências a respeito do contexto histórico da Indústria têxtil no brasil, impactos gerados pela indústria têxtil, sustentabilidade, propriedades e aplicação das fibras naturais, definição da rede de pesca utilizada, além da sustentabilidade e Desafios futuros. Utilizando como base Mayume, et.,al (2016), para a execução da parte prática do projeto, será implementada uma estrutura organizacional composta por sete etapas distintas, cada uma delas desenhada meticulosamente para alcançar os objetivos delineados. O processo se inicia com a coleta das redes de pesca e separação de resíduos contaminantes, esse processo será realizado manualmente ou por meio de equipamentos especializados, caso ocorra a necessidade de utilização dos mesmos, buscaremos parcerias com indústrias que possuam tal maquinário.

Logo após iremos para a limpeza e pré-tratamento dos materiais das redes de pesca para remoção de impurezas e resíduos, isso pode envolver a retirada de detritos orgânicos e a lavagem das redes. Para transformar uma rede de pesca em fios viáveis, é necessário seguir uma sequência que envolve tanto o processamento mecânico quanto o tratamento químico. Inicialmente, dependendo do tipo de rede de pesca, pode ser necessário cortá-la em pedaços menores para facilitar o processamento mecânico.

Em seguida, em alguns casos, é essencial submeter a rede a tratamentos químicos para remover revestimentos ou substâncias que possam afetar a qualidade da fibra. Após isso, o desfibramento entra em cena, onde uma técnica mecânica ou química é usada para separar as fibras individuais do material da rede. Finalmente, se as fibras forem suficientemente longas e resistentes, o processo de fiação pode ser aplicado para transformá-las em fios utilizáveis. Esses passos combinados permitem a transformação eficiente de uma rede de pesca em fios funcionais.

Na próxima etapa, realizaremos a coleta dos cocos (*Cocos nucifera*) descartados após o uso para outras finalidades, que serão reutilizados, com intuito de contribuir para redução do impacto ambiental que de acordo com Bitencourt e Venceslau (2008) esse resíduo gera em virtude do acúmulo em lixões e aterros sanitários, por conta da sua lenta decomposição levando cerca de oito anos para se decompor. Em seguida, ocorrerá a remoção das polpas; as cascas serão abertas para retirar a polpa do coco, que será separada da casca externa. Assim, com o auxílio de um martelo, separamos o endocarpo, a parte lisa, do mesocarpo, a parte fibrosa que utilizaremos. Para a realização da etapa de tratamento, seguimos a metodologia utilizada pelos autores Oliveira et al.,(2023), manualmente, retiramos fibra por fibra do endocarpo e, em seguida, deixaremos as fibras de molho, submersas em água sanitária por sete dias, garantindo a higienização das mesmas e evitando qualquer tipo de contaminação na produção do tecido, como consta na figura 1.

Figura 1: Limpeza das fibras de coco (utilizando água sanitária).

Fonte: Do autor (2024)

Após o período de imersão, as fibras passarão por um processo de limpeza e escovação em água corrente, para remover todo o resíduo do endocarpo, como consta na figura 2. Essas partes precisam ser minuciosamente retiradas, pois interferem no processo de produção dos fios.

Figura 2: Enxágue da fibra em água corrente

Fonte: Do autor (2024)

Para finalizar o tratamento das fibras de coco, realizamos testes de secagem para verificar sua resistência e durabilidade, antes de serem incorporadas à rede de pesca, como consta na figura 3. Primeiramente, testamos a secagem em estufa, a uma

temperatura de 100°C, com uma pequena quantidade de fibra de coco. Observamos que as fibras adquiriram rigidez; no entanto, o tempo necessário para a secagem foi maior do que o esperado. Diante disso, realizamos um novo teste, utilizando um forno pré-aquecido a 180°C por 10 minutos. Colocamos as fibras a 200°C por 20 minutos, observou-se que elas não secaram completamente em seu interior, mas queimaram na parte externa e, em relação à resistência, tornaram-se quebradiças.

Figura 3: Fibra recém ressecada

Fonte: Do autor (2024)

Em suma, se fez necessário, retomar as pesquisas bibliográficas para identificar o potencial erro nesse processo de separação das fibras para assim retomar os testes do protótipo. Posterior a etapa de produção das fibras, será necessário transformar esse produto em um tecido viável. Para tal, transformaremos as fibras de pesca reciclada e fibras de coco em fios, para esse momento, são necessárias máquinas de fiação, embasaremos essa etapa através dos autores Martins et al., (2003). Após a obtenção dos fios, máquinas de tecelagem ou tricô são utilizadas para produzir o tecido. Tecelagem é o processo de entrelaçar os fios para formar o tecido, enquanto o tricô envolve a formação do tecido por meio de laçadas.

Por fim, iniciaremos os testes para a resistência do tecido, avaliando a tração para medir a durabilidade e a força. Além, da capacidade de manter suas propriedades após a lavagem, como ele se comporta em diferentes temperaturas para garantir a

qualidade e eficácia do produto. Os testes de resistência serão realizados a partir da durabilidade a partir de itens pesados, utilizados no cotidiano, desde utilizar o nosso tecido como uma bolsa para carregar frutas na feira ou também carga materiais de construção para testes de resistência do tecido sustentável.

5 RESULTADOS OBTIDOS

Os resultados obtidos na transformação da fibra de coco foram bastante satisfatórios. Inicialmente, realizamos o processo de lavagem e retirada das fibras, o que foi feito com sucesso. Esse passo foi crucial para garantir a pureza e a qualidade do material. Assim como no artigo de Deniz et al., (2024) após a lavagem, utilizamos uma estufa para acelerar o processo de secagem das fibras Conforme descrito por Deniz et al. (2024), as amostras foram colocadas na estufa para o processo de secagem. A temperatura interna foi mantida em níveis específicos (50, 60, 70, 80 e 90°C) por meio de um controlador de temperatura. As amostras foram retiradas em intervalos pré-definidos, permitindo a coleta de dados sobre a temperatura e a massa. Em conformidade com a literatura existente sobre fibras vegetais, as medições foram realizadas a cada 5 minutos até que a variação da massa se tornasse mínima (aproximadamente 30 minutos). Após esse período, as medições passaram a ser feitas a cada 10, 15, 20, 25 e 30 minutos. Essa técnica permitiu que obtivéssemos fibras secas de forma eficiente, preparando-as adequadamente para a próxima etapa que seria entrelaçar as fibras para transformá-las em fios.

Em seguida, iniciamos o processo de elaboração do fio contínuo, utilizando duas técnicas principais. A primeira técnica foi a torção, que como no artigo de Martins (2013) a força de um fio torcido depende da coesão entre pontos de contato decorrentes de torção. Já a tensão de ruptura da fibra neste caso, não é muito relevante, já que com esse estudo ajudou a unir as fibras e aumentar a sua resistência.

A segunda técnica foi o trançado que como no estudo de Silva (2014), que proporcionou um fio mais espesso e durável.

Figura 4: Fibra trançada.

Fonte: Do autor (2024)

Por fim, sendo a técnica utilizada a de torção. Para otimizar a união das fibras, introduzimos uma cola à base de amido, este aditivo desempenha um papel fundamental, pois não apenas promove a coesão entre as fibras, mas também aumenta a resistência do fio produzido, tornando-o adequado para o processo de tecelagem e capaz de suportar testes de força.

Figura 5: Fibra torcida unida com cola à base de amido.

Fonte: Do autor (2024)

Os testes de resistência e durabilidade serão realizados utilizando um dinamômetro, ferramenta que permitirá a medição precisa da força e resistência do material. Em suma, conseguimos produzir um fio contínuo de fibra de coco que apresenta características favoráveis para o início de nosso protótipo, faltando ainda os testes de resistência e durabilidade do nosso fio. Esses resultados abrem novas possibilidades para o uso sustentável da fibra de coco na indústria, contribuindo para práticas mais ecológicas.

6 CONSIDERAÇÕES FINAIS

A combinação da fibra de coco e da rede de pesca em um único tecido abre novas perspectivas para estudos sobre durabilidade e eficiência de produtos sustentáveis. Isso pode resultar em descobertas valiosas sobre como diferentes fibras interagem, permitindo o desenvolvimento de tecidos que unem o melhor de ambos os mundos. A pesquisa sobre a decomposição e o ciclo de vida do material enriquecerá o entendimento da economia circular, fornecendo diretrizes essenciais para a indústria têxtil. Além disso, a investigação das propriedades do tecido, como respirabilidade e conforto, poderá inspirar o desenvolvimento de vestuário funcional em diversas áreas, desde moda até equipamentos de proteção. Com o crescente interesse por produtos eco-friendly, o tecido sustentável se torna um diferencial competitivo significativo. Marcas que adotam esse material podem atrair consumidores conscientes, ampliando seu alcance no mercado. A versatilidade do tecido permite sua aplicação em roupas, acessórios e produtos de decoração, criando novas linhas e segmentos. A produção desse tecido a partir de materiais que seriam descartados também pode gerar oportunidades de emprego em comunidades locais, promovendo uma economia mais inclusiva e solidária. Dessa forma, o tecido sustentável feito de fibra de coco e rede de pesca não apenas representa uma solução inovadora para os desafios ambientais, mas também atua como um catalisador para novas pesquisas e inovações no mercado. Ao integrar práticas sustentáveis com avanços científicos, ele redefine a forma como percebemos e consumimos produtos têxteis, contribuindo para um futuro mais consciente e responsável. A valorização de materiais que, de outra forma, seriam descartados demonstra que a criatividade e a inovação podem se alinhar à sustentabilidade, criando um impacto positivo duradouro.

REFERÊNCIAS

BITENCOURT, Daniela Venceslau et al. Potencialidades e estratégias sustentáveis para o aproveitamento de rejeitos de coco (Cocus nucifera L.). 2008. Disponível em: https://ri.ufs.br/jspui/handle/123456789/4179

DA SILVA, Alessandro Costa. Reaproveitamento da casca de coco verde. Revista Monografias Ambientais, v. 13, n. 5, p. 4077-4086, 2014. Disponível em: https://core.ac.uk/download/pdf/231167827.pdf

DE BRITO DINIZ, Jacqueline Félix et al. Secagem de fibras de sisal em estufa com circulação forçada de ar: Um estudo experimental. Pesquisa, Sociedade e Desenvolvimento, v. 9, n. 10, pág. e8639109342-e8639109342, 2020. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9342

FUJITA, Renata Mayumi Lopes; JORENTE, Maria José. A Indústria Têxtil no Brasil: uma perspectiva histórica e cultural. ModaPalavra e-periódico, n. 15, p. 153-174, 2015. Disponível em: https://www.redalyc.org/pdf/5140/51496008.pdf

GOMES, Diego. A pesca industrial e seu papel na poluição oceânica. 12. Ed. Belo Horizonte, 2021. Disponível em: https://repositorio.ufra.edu.br/jspui/handle/123456789/1476

GORINI, Ana Paula Fontenelle; SIQUEIRA, Sandra Helena Gomes de. Tecelagem e malharia. BNDES Setorial, Rio de Janeiro, n. 7, p. 29-56, mar. 1998. Disponível em: https://web.bndes.gov.br/bib/jspui/handle/1408/2540

MARTINS, Adriana Pacheco. Estudo sobre utilização da fibra de coco verde em estruturas têxteis. 2013. Tese de Doutorado. Universidade de São Paulo. Disponível em: https://www.teses.usp.br/teses/disponiveis/100/100133/tde-25082013-140624/en.php

MONTEIRO, Daniela Pereira Dias. DESIGN como veículo para o reaproveitamento dos resíduos de cordas e redes de pesca para a criação de produtos. 2016. Disponível em: https://repositorio-aberto.up.pt/bitstream/10216/87214/2/166021.pdf

SALAZAR, Vera Lúcia Pimentel et al. Subsídios para análise do ciclo de vida de assentos à base de fibra de coco e látex. 2000. Disponível em: https://repositorio.unesp.br/items/791c7941-019b-4f66-bb0e-a9dc534a7cb4

SOUSA, Silva Angélica; OLIVEIRA, Samarago Guilherme; ALVES, Hilário Lais. A pesquisa bibliográfica: princípios e fundamentos. 43. Ed. Minas Gerais, 2021. Disponível em: https://revistas.fucamp.edu.br/index.php/cadernos/article/view/2336