

Ciências Biológicas FEMIC JOVEM

GABRIELI MONIQUE CAMPOS

DIONÉIA SCHAUREN

COLÉGIO ESTADUAL JARDIM PORTO ALEGRE
TOLEDO, PARANÁ, BRASIL

AVALIAÇÃO DO EFEITO DO BIOFILME COMESTÍVEL NA CONSERVAÇÃO DE VEGETAIS DE CONSUMO IN NATURA – FASE IV

Biofilme

- É uma película transparente comestível para auxiliar na preservação de alimentos na pós-colheita, preparada à base de diferentes tipos de micros-triturados, para dar um aspecto mais apetitoso e resistente;
- Os revestimentos possuem excelentes propriedades de barreira, principalmente ao transporte de gases e vapor de água, evitando a entrada e a saída do gás etileno.

FIGURA 01: Banana metade com biofilme e metade sem.

FONTE: Gabrieli Monique Campos.

Problema

- Muitos alimentos são perecíveis e acabam sendo descartados no comércio antes de chegarem às mãos do consumidor, por não terem durabilidade, ou pela contaminação de fungos;
- Causando um grande impacto negativo na economia do comerciante e do consumidor.

FIGURA 2: Contaminação de fungo na banana.

FONTE: Gabrieli Monique Campos.

Objetivo

- Avaliar o efeito de biofilme comestível a base de micros-triturados e microalgas na conservação de vegetais;
- Reduzir custos e desperdício de alimento;
- Aumentar o tempo de durabilidade dos vegetais;
- Diminuir o contágio de fungos nos alimentos.

Biofilme de diferentes micros triturados

T1 – Controle	(sem biofilme).	
---------------	-----------------	--

- T2 Farinha de espinafre.
- T3 Farinha de banana verde.
- T4 Farinha de uva.
- T5 Farinha de beterraba.
- T6 Farinha de linhaça marrom.
- T7 Farinha de feijão branco.
- T8 Farinha de batata doce.
- T9 Farinha de trigo integral.
- T10 Farinha de maracujá.
- T11 Farinha de soja.
- T12 Farinha de laranja.

- T13 Farinha de albumina.
- T14 Fécula de batata.
- T15 Cravo em pó.
- T16 Colágeno.
- T17 Colorau em pó.
- T18 Goma de xantana.
- T19 Farinha de tapioca.
- T20 Polvilho doce.
- T21 Polvilho azedo.
- T22 Araruta.
- T23 Fécula de mandioca.

FONTE: Gabrieli Monique Campos.

Biofilme dediferentes concentrações de *Spirulina* sp.

T1 – Controle (sem biofilme).
T2 – 0,2g. Spirulina sp.
T3 – 0,4g. Spirulina sp.
T4 – 0,6g. <i>Spirulina</i> sp.
T5 – 0,8g. <i>Spirulina</i> sp.
T6 – 1g. Spirulina sp.
T7 – 1,2g. Spirulina sp.
T8 – 1,4g. <i>Spirulina</i> sp.
T9 – 1,6g. <i>Spirulina</i> sp.
T10 – 1,8g. <i>Spirulina</i> sp.
T11 – 2g. <i>Spirulina</i> sp.
T12 – 2,2g. <i>Spirulina</i> sp.
T13 – 2,4g. <i>Spirulina</i> sp.

T14 – 2,6g. <i>Spirulina</i> sp.
T15 – 2,8g. <i>Spirulina</i> sp.
T16 – 3g. Spirulina sp.
T17– 3,2g. Spirulina sp.
T18 – 3,4g. <i>Spirulina</i> sp.
T19 – 3,6g. <i>Spirulina</i> sp.
T20 – 3,8g. <i>Spirulina</i> sp.
T21 – 4g. Spirulina sp.
T22 – 4,5g.Spirulina sp.
T23 – 5g. Spirulina sp.
T24 – 5,5g. <i>Spirulina</i> sp.
T25 – 6g. Spirulina sp.

FONTE: Gabrieli Monique Campos.

Biofilme dediferentes combinações de microalgas e farinhas

T1 – Controle (sem biofilme).

T2 – Spirulina + araruta.

T3 – Spirulina + polvilho azedo.

T4 - Spirulina + polvilho doce.

T5 – Spirulina + tapioca.

T6 – Spirulina + fécula de mandioca.

T7 – Araruta + polvilho azedo.

T8 – Araruta + polvilho doce.

T9 – Araruta + tapioca.

T10 – Araruta + fécula de mandioca.

T11 – Polvilho azedo + polvilho doce.

T12 – Polvilho azedo + tapioca.

T13 – Polvilho azedo + fécula de mandioca.

T14 – Polvilho doce + tapioca.

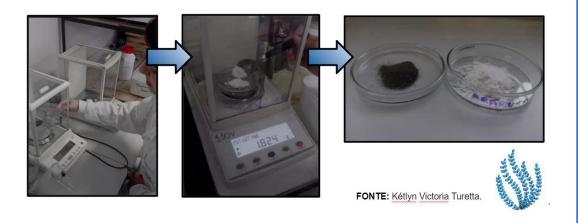
T15 – Polvilho doce + fécula de mandioca.

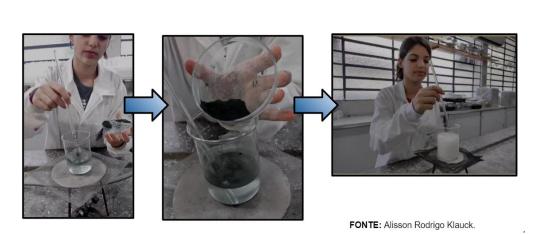
T16 – Tapioca + fécula de mandioca.

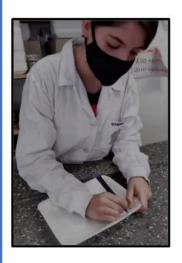
T17 – Spirulina.

T18 – Araruta.

T19 – Polvilho azedo.


T20 - Polvilho doce.


T21 – Tapioca.


T22 – Fécula de mandioca.

Metodologia



FONTE: Alisson Rodrigo Klauck..

FONTE: Kétlyn Victoria Turetta

Considerações finais

- Para o teste de diferentes composições aplicado em mangas, os ensaios em armazenamento temperatura ambiente de T14 - Fécula de batata, T18 – Goma de Xantana e T19 – Farinha de tapioca foram os mais eficazes com a durabilidade média de 45 dias de durabilidade e o controle com média de apenas 7 dias de durabilidade.
- Já para os ensaios armazenados em condições resfriados os tratamentos mais eficazes foram T14 - Fécula de batata, T18 – Goma de Xantana, T19 – Farinha de tapioca e T22 – araruta se mantiveram conservados em média 96 dias, já o controle ficou armazenado em média de 19 dias.

Contideraçõet finait

- Para os ensaios de quiabos com biofilme a base de Spirulina sp. tanto em armazenamento temperatura ambiente quanto resfriado as melhores concentrações foram de 1,8g; 2g e 2,2g se mantendo-se conservados em média em temperatura ambiente 54 dias e o controle 16 dias, já em temperatura resfriado a média foi de 88 dias e o controle 28 dias de durabilidade.
- O trabalho ainda se encontra em andamento com o teste de diferentes misturas de componentes no biofilme variando: Spirulina sp., araruta, polvilho azedo, polvilho doce, farinha de tapioca e fécula de mandioca.

Agradecimentos

Agradecemos a escola e ao clube de ciências pelo apoio de tudo para que este projeto seja possível, também agradecemos a FEMIC por essa oportunidade de participar desta feira de ciências.

Realização

Apoiadores

