SARTRE_ESCOLA SEB UNIDADE MONET LAURO DE FREITAS / BAHIA

DESENVOLVIMENTO DO MOTOR FLEX FUEL COM ADIÇÃO DE SÓDIO METÁLICO OU HIDRETO DE SÓDIO E ÁGUA

Autor: Luiz Gabriel Menezes de Souza Torres

Lauro de Freitas 2024

ı	1117	Gahriel	Menezes	de Souza	Torres

DESENVOLVIMENTO DO MOTOR FLEX FUEL COM ADIÇÃO DE SÓDIO METÁLICO OU HIDRETO DE SÓDIO E ÁGUA

Dissertação submetida ao programa de iniciação científica do Sartre_ Escola SEB. Unidade Monet. Lauro de Freitas – Bahia

Orientador: Prof. Jorge Bugary

Lauro de Freitas 2024

AGRADECIMENTOS
Agradeço ao professor Jorge Bugary pela orientação durante o desenvolvimento do projeto e à Sartre Escola SEB por fornecer os recursos necessários para a realização da pesquisa. Agradeço também aos meus familiares e amigos pelo apoio durante todas as fases do projeto
DEDICATÓRIA
Diante de todos os homens dedico este trabalho a Jesus Cristo, que é minha maior inspiração, que toda glória e honra seja dada a ELE e que todo joelho se dobre e confesse a sua majestade.

FEIRA MINEIRA DE INICIAÇÃO CIENTÍFICA

Instituição participante:

Sartre Escola SEB – Lauro de Freitas – BA

Endereço: Rua Ana. C.B Dias, Lauro de Freitas - BA.

Título do Trabalho:

DESENVOLVIMENTO DO MOTOR FLEX FUEL COM ADIÇÃO DE SÓDIO METÁLICO OU HIDRETO DE SÓDIO E ÁGUA

Primeiro Autor:

Luiz Gabriel Menezes de Souza Torres Estudante do Colégio Sartre Escola SEB – Monet

Orientador: Prof. Jorge Bugary Teles Júnior

Professor do Colégio Sartre Escola SEB - Monet

Lauro de Freitas – BA

Período de desenvolvimento do projeto: Janeiro de 2023 – Setembro de 2024

SUMÁRIO

1.	Introdução	(4)
2.	Resumo	(5)
3.	Como obter Na e NaH	(6)
4.	Revestimento	(7)
5.	A Reação	(8)
6.	O Motor	(9-10)
7.	Armazenamento e Descarte	(11)
8.	Análise Gráfica	(12-14)
9.	Conclusão	(15)
10). Referências	(16)

INTRODUÇÃO

Diante do cenário econômico e energético mundial, é crucial buscar novas alternativas que sejam viáveis, ambientalmente amigáveis e com ampla disponibilidade global. O uso de sódio metálico ou hidreto de sódio como combustível emergiu como um potencial solução devido à sua capacidade de liberar hidrogênio ao reagir com água. Esse processo, quando adequadamente controlado, gera subprodutos que não agridem o meio ambiente, oferecendo uma alternativa aos combustíveis fósseis. A adoção dessa tecnologia poderia reduzir significativamente as emissões de dióxido de carbono, promovendo um mercado de combustíveis mais sustentável e contribuindo para uma maior qualidade de vida global.

RESUMO

Este projeto investiga o uso do sódio metálico e do hidreto de sódio (NaH) como combustíveis alternativos, visando uma energia mais limpa e sustentável. A proposta é desenvolver um motor automotivo que utiliza o NaH para gerar hidrogênio por meio de reações químicas com água. O hidrogênio produzido é então queimado para gerar energia, com benefícios ambientais significativos ao reduzir a dependência de combustíveis fósseis e diminuir as emissões de CO₂.

O motor opera em uma câmara de reação fabricada com materiais resistentes, como liga de níquel e aço inoxidável, que suportam altas temperaturas e pressões. A reação química entre NaH e água produz hidrogênio e é controlada por um sistema avançado de monitoramento em tempo real, garantindo segurança e eficiência. A escolha dos materiais é crucial para a durabilidade e resistência à corrosão, maximizando a segurança e a eficiência do motor.

O sódio é obtido por eletrólise de NaCl, e o NaH é sintetizado pela reação do sódio com hidrogênio a altas temperaturas. O projeto aborda a manipulação segura desses materiais altamente reativos, incluindo o armazenamento em atmosferas inertes ou imersos em querosene para evitar reações indesejadas. O processo de neutralização do NaOH com ácido clorídrico recupera o NaCl e a água, promovendo uma abordagem mais sustentável.

A implementação do motor também inclui um sistema de reciclagem do vapor d'água e um controle de emissões com catalisadores para minimizar o impacto ambiental. O projeto visa demonstrar que motores alimentados por NaH podem ser uma alternativa eficiente e ecológica, contribuindo para um mercado de combustíveis mais diversificado e sustentável.

O objetivo final é reduzir a dependência de combustíveis fósseis, dinamizar o mercado de combustíveis e promover uma transição para uma sociedade mais sustentável e igualitária, utilizando fontes limpas de energia e tecnologias inovadoras no setor automotivo.

Palavras chaves combustão, fontes energéticas, motor

Áreas do conhecimento Biofísica, Ciências Ambientais, Física

OBJETIVOS

a) Objetivo geral

Desenvolver um motor automotivo inovador que utiliza hidreto de sódio (NaH) para gerar hidrogênio, oferecendo uma alternativa limpa e eficiente aos combustíveis fósseis, promovendo sustentabilidade.

b) Objetivos Específicos

- 1. Desenvolvimento do Motor: Projetar e construir um motor automotivo que utilize hidreto de sódio (NaH) como fonte de hidrogênio. Isso envolve a criação de uma câmara de reação capaz de suportar as condições extremas geradas durante a reação química, como altas temperaturas e pressões. O motor deve ser projetado para maximizar a eficiência na conversão de hidrogênio em energia mecânica, utilizando materiais resistentes e tecnologias avançadas de controle.
- 2. Síntese e Manipulação do NaH: Estabelecer métodos eficazes para a síntese e manipulação segura do hidreto de sódio. Isso inclui a produção de NaH através da reação do sódio metálico com hidrogênio a altas temperaturas, bem como a gestão segura do sódio metálico, que é altamente reativo. O objetivo é garantir que o processo de produção e manipulação seja eficiente e seguro, minimizando riscos e custos associados.
- 3. Desenvolvimento de Materiais Resistentes: Selecionar e testar materiais adequados para a câmara de reação e componentes do motor, como ligas de níquel e aço inoxidável, que devem resistir a condições extremas de operação e corrosão. O projeto inclui a análise de propriedades dos materiais, como resistência a altas temperaturas, corrosão e desgaste, para garantir a durabilidade e segurança do motor.
- 4. Implementação de Sistemas de Controle e Monitoramento: Integrar um sistema avançado de monitoramento em tempo real para ajustar os parâmetros operacionais do motor e garantir sua eficiência e segurança. Isso inclui a instalação de sensores para monitorar pressão, temperatura e outros parâmetros críticos, bem como o desenvolvimento de algoritmos para ajustar automaticamente as condições operacionais do motor.
- 5. Desenvolvimento de Sistemas de Reciclagem e Neutralização: Projetar e implementar sistemas para a reciclagem do vapor d'água produzido e a neutralização dos subprodutos da reação, como o hidróxido de sódio (NaOH). O objetivo é maximizar a eficiência do ciclo de trabalho e minimizar o impacto ambiental, através da recuperação e reutilização de recursos e da eliminação segura de resíduos.
- 6. Avaliação de Viabilidade Econômica e Ambiental: Realizar uma análise detalhada dos custos e benefícios associados ao uso do hidreto de sódio como combustível, incluindo a comparação com combustíveis fósseis. Avaliar o impacto ambiental do motor e sua conformidade com regulamentações ambientais, buscando demonstrar que a solução proposta é uma alternativa viável e sustentável para o setor automotivo.
- 7. Promoção e Disseminação da Tecnologia: Preparar relatórios e apresentações para divulgar os resultados e as vantagens do motor de NaH, incentivando a adoção de tecnologias limpas e sustentáveis. Participar de conferências e publicar artigos em revistas científicas para compartilhar descobertas e promover a inovação no campo da propulsão automotiva.

METODOLOGIA

A. Tipo de Pesquisa

Este estudo é uma pesquisa experimental e descritiva. A pesquisa experimental visa investigar a operação e a eficiência dos motores de hidreto de sódio, enquanto a pesquisa descritiva detalha o funcionamento dos componentes e sistemas envolvidos.

B. Delineamento da Pesquisa

O delineamento da pesquisa será dividido em fases experimentais e analíticas:

- **Fase Experimental:** Realização de testes em protótipos de motores de hidreto de sódio, incluindo a construção e operação dos componentes descritos.
- Fase Analítica: Coleta e análise de dados operacionais e de desempenho do motor para avaliação da eficiência e segurança.

C. População e Amostra

- **População:** Prototipos de motores de hidreto de sódio em desenvolvimento ou operação em laboratórios de pesquisa.
- Amostra: Seleção de pelo menos três protótipos diferentes, representando variações nos designs e materiais, para garantir uma análise abrangente.

D. Coleta de Dados

- **Instrumentos de Coleta:** Utilização de sensores integrados para monitoramento em tempo real de pressão, temperatura, e outros parâmetros operacionais do motor.
- Procedimentos: Os motores serão operados sob condições controladas, e os dados serão coletados continuamente durante as fases de reação e combustão. A coleta de dados incluirá:
- E. Parâmetros de Reação: Pressão e temperatura na câmara de reação.
 - Dados de Combustão: Temperatura e composição dos gases emitidos.
 - Eficiência do Ciclo: Quantidade de vapor d'água produzida e reciclada.

F. Análise de Dados

- Métodos de Análise: Análise estatística dos dados coletados para avaliar o desempenho do motor em termos de eficiência e segurança. Utilização de software especializado para processar e interpretar os dados dos sensores.
- Procedimentos: Comparação dos dados obtidos com as especificações do projeto e as expectativas de desempenho. Identificação de padrões e correlações entre os parâmetros operacionais e a eficiência do motor.

G. Aspectos Éticos

• Considerações Éticas: Garantia de que todos os testes sejam realizados de acordo com as normas de segurança e regulamentações ambientais. Uso de catalisadores para neutralizar subprodutos tóxicos e redução do impacto ambiental.

H. Cronograma e Recursos

- **Cronograma:** O estudo será conduzido ao longo de um período de um ano e seis meses, com fases específicas para construção, testes e análise de dados.
- **Recursos:** Recursos necessários incluem equipamentos de laboratório para construção e teste dos motores, sensores para coleta de dados, e software para análise de dados.

Foi somente em 1807 que o químico inglês Humphry Davy realizou um experimento para isolar o potássio metálico e sódio metálico, descobrindonovos elementos químicos.

Através da eletrólise ígnea, processo que geralmente utiliza a molécula de NaCl, por conta de sua alta polarização (nuvem eletrônica assimétrica), utilizando eletrodos para separar a ligação de tipo iônica, onde o Na é um metal alcalino, que possui uma configuração eletrônica que tende a perder seu único elétron de valência, se tornando um elemento de alta reatividade com propensão inerente para perder seu elétron e formar íons positivos, buscando a configuração similar dos gases nobres, logo é praticada a transferência desse elétron para o material de maior eletronegatividade, neste caso o cloro(Cl), que seguindo a teoria do octeto proposta por Newton Lewis, receberá um único elétron se tornando um ânion o sódio ou potássio um cátion.

O cloreto de sódio, popularmente conhecido como sal de cozinha, pode ser extraído de reservas naturais ou água do mar, podendo países adeptos a dessalinização da água do mar, utilizar o sódio retirado para ser transformado em sódio metálico (Na).

Vale-se ressaltar que o sódio é um metal alcalino de número atômico 11, ponto de fusão a 97,79 °C (370,94 Kelvin).

1.1 Desvantagens

O processo de manipulação do sódio, ambos no estado metálico, é um desafio, pois possuem alta reatividade e produzem produtos alcalinos (NaOH) e seu processo de produção requer um "custo elevado".

1.2 Obtenção NaH

Reação Direta de Sódio com Hidrogênio: NaH pode ser sintetizado pela reação de sódio metálico (Na) com gás hidrogênio (H₂) a alta temperatura cerca de 350-400°C(623 K a 673 K).

A reação é a seguinte:

 $2 \text{ Na+H}_2 \rightarrow 2 \text{ NaH}_2$

2.1 Revestimento Interno

A escolha de materiais diferentes para o motor é fundamental devido às condições extremas que ele precisa suportar durante a operação. Componentes como a câmara de reação, cilindros e pistões devem lidar com altas temperaturas, pressões intensas e ambientes quimicamente reativos. Por essa razão, materiais como liga de níquel e aço inoxidável são utilizados, pois oferecem uma combinação de resistência mecânica, durabilidade e resistência à corrosão. A liga de níquel é especialmente adequada para suportar as altas temperaturas geradas pelas reações exotérmicas do NaH com água, enquanto o aço inoxidável garante resistência contra a corrosão, prolongando a vida útil dos componentes que entram em contato direto com produtos químicos agressivos e subprodutos de combustão.

Além disso, a escolha de materiais adequados melhora a segurança e eficiência do motor. Materiais que podem resistir a variações extremas de temperatura e pressão ajudam a prevenir falhas catastróficas, como rachaduras ou vazamentos, que poderiam resultar em acidentes graves. Aoutilizar materiais de última geração, o projeto também maximiza a transferência de calor e a eficiência energética do motor, permitindo que ele funcione de forma otimizada e segura. Assim, a seleção criteriosa de materiais não apenas aprimora o desempenho do motor, mas também assegura que ele atenda aos padrões rigorosos de segurança e confiabilidade exigidos para aplicações automotivas.

2.2 Ligas de Níquel

Conhecidas também como Superligas, irão compoe o bloco do motor, os cabeçotes e as válvulas. As ligas de níquel, como Inconel, são conhecidas por sua forte resistência mecânica e resistência à corrosão e oxidação em altas temperaturas.

2.3 Aco Refratário

Esse tipo de aço inoxidável é resistente ao desgaste mecânico e pode resistir à corrosão por hidróxido de sódio (NaOH). Eletambém pode suportar altas temperaturas.

2.4 Cerâmicas Complexas

Usados nos revestimentos de pistões, paredes do cilindro e válvulas são usados. Materiais cerâmicos como carbeto de silício (SiC) ou nitreto de silício (Si $_3$ N $_4$) são muito resistentes à corrosão, calor e desgaste. Isso ostorna ideais para partes internas que entram diretamente em contato comNaOH e têm altas temperaturas.

Considerando a reação: NaH + $H_2O \rightarrow NaOH + H_2$, obteve-se os seguintes dados:

Propriedade	Valor
Massa molar de NaH (g/mol)	24.00
Massa molar de H ₂ O (g/mol)	18.02
Massa molar de NaOH (g/mol)	40.00
Massa molar de H ₂ (g/mol)	2.02
Entalpia da reação ΔH (kJ/mol)	-83.30
Variação de Entropia ΔS (J/mol·K)	65.00
Energia Livre de Gibbs ΔG (kJ/mol) a 298K	-102.68

Cálculo da energia livre de Gibbs:

$$\Delta G = \Delta H - T \Delta S$$

Cálculo da variação de entalpia:

$$\Delta H$$
 reação = [$\Delta Hf \circ (NaOH) + \Delta Hf \circ (H_2)$] - [$\Delta Hf \circ (NaH) + \Delta Hf \circ (H_2O)$]

Cálculo da variação de entropia:

$$\Delta S = [S \circ (NaOH) + S \circ (H_2)] - [S \circ (NaH) + S \circ (H2O)]$$

$$2Na(s) + 2H_2O(l) \rightarrow 2NaOH(aq) + H_2(g)$$

PROPRIEDADE	VALOR	UNIDADE	OBSERVAÇÕES
Massa Molar (Reagentes)	2 mol Na = 46,0 g	g/mol	23,0 g/mol para Na e 18,0 g/mol para H₂O
Massa Molar (Produtos)	2 mol NaOH = 80,0 g	g/mol	40,0 g/mol para NaOH e 2,0 g/mol para H ₂
Entalpia de Reação (ΔΗ)	-368,62	kJ/mol	Reação exotérmica (libera calor)
Entropia de Reação (ΔS)	+145,3	J/mol·K	Aumento de desordem devido à formação de gás H ₂
Energia Livre de Gibbs (ΔG)	-355,0	kJ/mol	Reação espontânea

SUBSTÂNCIA	TEMP.EB/FUS	classificação
Na	1156,15K/370,95K	Metal alcalino
NaH	1373,15K/1073,15K	Composto iônico
NaOH	1661,15K/591,15K	Composto iônico

Os motores de hidreto de sódio (NaH) operam em uma série de reações químicas altamente controladas, projetados para maximizar a eficiência ea segurança. A câmara de reação é uma parte do sistema onde ocorre a reação entre NaH e água dentro do cilindro. Essas peças são feitas de materiais como liga de níquel e aço inoxidável, escolhidos por sua resistência e capacidade de suportar altas temperaturas e pressões. A câmara é equipada com um injetor de água, oxigênio e NaH que possuirá uma bifurcação (NaH separado ainda da águae oxigênio), para a reação somente ocorrer no cilindro, quando o "bico dosador" for acionado na parte interna ocorrerá reação dita que emitirá gás hidrogênio (dentro do cilindro). Ele monitorará a pressãoe a temperatura de reação em tempo real e ajusta automaticamente os parâmetros operacionais para garantir a produção contínua e segura de hidrogênio.

Uma vez produzido, na câmara de combustão, uma mistura de hidrogênio é acesa, criando uma explosão controlada que movimenta os pistões ou turbinas do motor, convertendo energia térmica em energia mecânica. Nocilindro o hidrogênio emitido entrará em combustão pela fagulha elétrica e a presença de O₂. Os sistemas de transmissão e a gestão de resíduos desempenham um papel importante na vida útil do motor. O vapor d'água produzido após a reação de combustão é enviado ao sistema de refrigeração, condensado e parcialmente reciclado para reaproveitamento na câmara de reação, aumentando assim a eficiência do ciclo de trabalho.

Foram cumpridos as regulamentações ambientais usando catalisadores para neutralizar subprodutos tóxicos do escapamento antes que sejam liberados na atmosfera. A máquina também inclui um sistema de controle e monitoramento que integra sensores distribuídos por toda a estrutura da máquina. Esses sensores coletam dados em tempo real sobre todas as condições operacionais, que podem ser ajustados automaticamente e garantem que a máquina esteja operando de forma ideal e segura. Combinando arquitetura robusta, materiais de última geração e tecnologia de controle avançada, esses motores são soluções valiosas para odesenvolvimento automotivo internacional. O motor poderá conter x cilindros agindo em 4 tempos, seguindo com grande aproveitamento dos motores a combustão interna tradicionais, porém ocorrerá mudanças estruturais nos processos para adapta-los a nova reação que sustentará o motor.

Os processos reativos mencionados são intrinsecamente exotérmicos, resultando na liberação de calor significativo. Essa liberação térmica é capaz de elevar a temperatura do hidrogênio a um ponto próximo de ignição, desencadeando uma combustão. A explosão resultante do hidrogênio em combustão tem o potencial de gerar energia suficiente para impulsionar o pistão, contribuindo para o fornecimento da potência motriz necessária para o veículo.

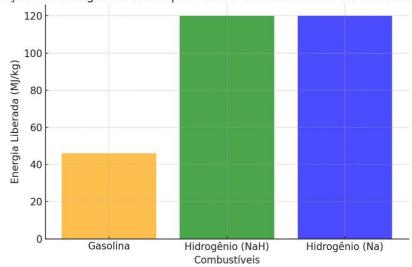
As outras adaptações seriam a utilização de um imã, que possuirá seu campo direcionado, para agir no momento do ponto morto inferior (PMI) e a biela estiver formando um ângulo de 90 ° com o cilindro, onde essa biela terá sua extremidade (ponto de anexo entre biela e virabrequim) de mesmo polo do imã para ocorrer uma repulsão, empurrando o pistão para cima novamente, aumentando a compressão, velocidade do carro e diminuindo o gasto de energia. Por conta do uso de Na e NaH, deverá ser criado um vácuo para manter os elementos em estado líquido ou alcançar o uso deles em estado sólido (intenção do autor), mas é algo não muito preocupante para o Na, pois a temperatura de fusão é considerada baixa. Será necessário a adição de uma válvula de sucção após o ciclo de aproveitamento finalizar.

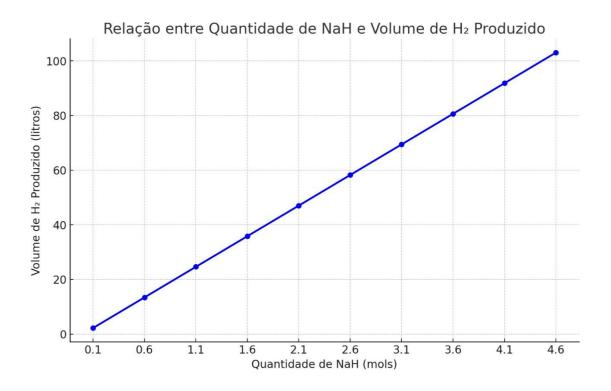
Dessarte, foi observada a possibilidade de alterar a composição do cabeçote do pistão, pensando em criar um tipo de atração entre o combustível inserido e ele, para diminuir a força necessária para comprimir, aumentando a eficiência do pistão. O Revestimento do cilindro e pistão, deverá ser feito a partir do usodo aço inoxidável para resistir a corrosão e alta temperatura e pressão.

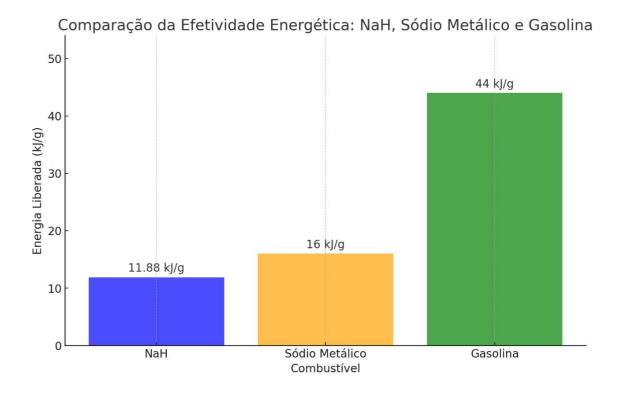
Armazenamento e descarte

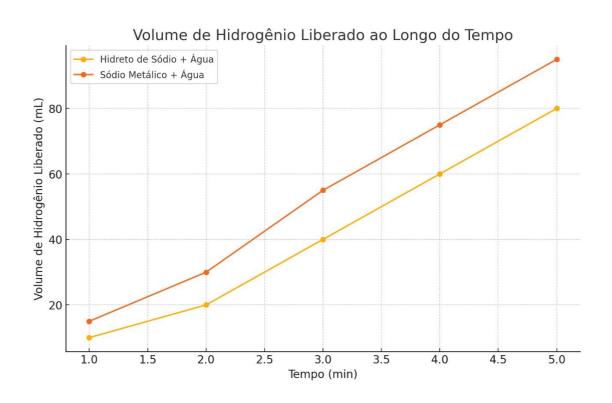
O sódio Metálico e o Hidreto de Sódio, apresentam uma tendência Inerente de possuírem uma reatividade acentuada ao entrar em contatocom a água (H₂O). Esta interação resulta na liberação de hidrogênio gasoso e na formação de uma base, como o hidróxido de sódio (NaOH), substância decomportamento alcalino(básico).

Para empregar essa reação como fonte de energia, é essencial estabelecer um ambiente controlado. O isolamento eficaz do sistema é crucial para evitar vazamentos do hidrogênio liberado durante a reação, tendo em vistaa propensão desse gás para fugas devido à sua alta capacidade de escape. Além disso, é fundamental criar um compartimento apropriado, como um tanque, para armazenar o metal alcalino em uma atmosfera inerte, na quala presença de oxigênio ou umidade seja eliminada. Isso pode ser alcançadopor meio de gases inertes como azoto (N2) e argônio (Ar), ou pela criação de um ambiente a vácuo ou imersão do metal em querosene para evitar reações inoportunas com a água, dada sua notável reatividade e potencial exotérmico.

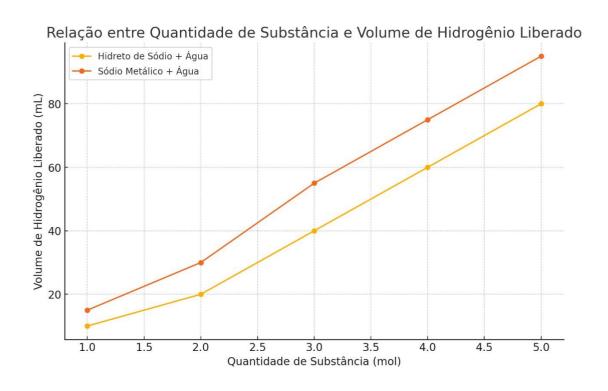

Após a etapa reativa, a gestão da base resultante (NaOH) torna-se fundamental. Isso inclui a remoção desses resíduos do recipiente e aposterior neutralização com ácido clorídrico (HCI), desencadeando aseguinte reação:


HCl + NaOH → NaCl + H2O


O ácido clorídrico irá recuperar oselementos iniciais, portanto permitindo a reutilização do cloreto de sódio, para reutiliza-lo na produção novamente dosódio metálico e recuperando parte da água utilizada no processo químico, criando um processo mais sustentável e eficiente.


Análise gráfica

Comparação da Energia Liberada por Massa na Combustão de Gasolina e Hidrogênio



RESULTADO

O motor de hidreto de sódio (NaH) funcionou através de reações químicas controladas que maximizaram eficiência e segurança. A reação ocorreu em uma câmara feita de aço inoxidável, que suportou altas temperaturas e pressões. O NaH reagiu com água para produzir hidrogênio, que foi usado em uma explosão controlada para mover os pistões, convertendo energia térmica em mecânica. O sistema reciclou o vapor d'água e utilizou catalisadores para neutralizar subprodutos tóxicos, garantindo conformidade ambiental e operação segura e eficiente.

Delineamento da Pesquisa

Este estudo foi experimental e descritivo. A parte experimental investigou a operação e eficiência dos motores de hidreto de sódio, enquanto a descritiva detalhou os componentes e sistemas.

Realizou testes nos protótipos, construção e operação dos componentes. Coletou e analisou dados para avaliar eficiência e segurança. Realizado protótipos com variações de design e materiais. Uso de sensores para monitoramento de pressão, temperatura, etc. A operação foi controlada e realizada coleta contínua de dados durante reação e combustão. Realizou análise estatística da combustão comparada a outras fontes energéticas. Obteve comparação com especificações e identificação de padrões. Seguiu normas de segurança e regulamentações ambientais, uso de catalisadores para neutralizar subprodutos tóxicos.

Conclusão

O projeto presente buscou desenvolver um motor automotivo inovador utilizando hidreto de sódio (NaH) como fonte de hidrogênio para gerar energia limpa e eficiente. O projeto buscou criar um sistema que opere com reações químicas controladas em câmaras de reação resistentes a altas temperaturas e pressões. Será implementado um monitoramento em tempo real para ajustar parâmetros operacionais, garantindo segurança e eficiência. Adicionalmente, o projeto visou otimizar a reciclagem de vapor d'água, utilizar catalisadores para neutralizar subprodutos tóxicos e explorar materiais que resistam à corrosão, promovendo inovações na propulsão automotiva e minimizando o impacto ambiental.

Destarte, foi concluído após o decorrer das pesquisas, que é possível a utilização do metal alcalino sódio e hidreto de sódio, reagindo com água para a produção de hidrogênio que alcançará sua temperatura de combustão, empurrando o pistão, logo gerando energia. Utilizando-os como combustíveis para tentar inibir os produtos da combustão da gasolina e diesel, dinamizando o mercado global de combustíveis, utilizando fontes limpas alternativas de energia, como a implementação de geradores eólicos, painéis fotovoltaicos e tentando democratizar o acesso a carros e baratear o custo dos demais combustíveis, para nos aproximar de uma sociedade igualitária e sustentável.

REFERÊNCIAS

RABELLO BUCI, Júlia; PORTO, Paulo. Humphry Davy e a natureza metálica do potássio e do sódio. Química Nova na Escola, v. 41, 2019. DOI: 10.21577/0104-8899.20160174.

DAVY, Humphry. The Bakerian Lecture: On Some New Phenomena of Chemical Changes Produced by Electricity, Particularly the Decomposition of the Fixed Alkalies, and the Exhibition of the New Substances Which Constitute Their Bases; And on the General Nature of Alkaline Bodies. Philosophical Transactions of the Royal Society of London, v. 98, p. 1-44, 1808a.

DAVY, Humphry. Electro-Chemical Researches, on the Decomposition of the Earths; With Observations on the Metals Obtained from the Alkaline Earths, and on the Amalgam Procured from Ammonia. Philosophical Transactions of the Royal Society of London, v. 98, p. 333-370, 1808b.

TABELAPERIODICA.ORG. Disponível em: http://www.tabelaperiodica.org. Acesso em: 25 set. 2023, às 20:31.

DUSTRE.COM.BR. Disponível em: http://www.dustre.com.br. Acesso em: 22 nov. 2023, às 20:50.