

De 09 a 29 de novembro de 2024

ENGENHARIA FEMIC JOVEM

BÁRBARA DE SOUSA PINHEIRO COSTA

MAEVILY MENDES LUCENA

MARIA CLARA MEDEIROS VASCONCELOS


ANNI MABELLY FELIPE QUEROGA GOUVEIA

DANIEL DANTAS MARQUES

ESCOLA DIONÍSIO MARQUES DE ALMEIDA

PATOS/PB, BRASIL

VISIONLINK: DISPOSITIVO INCLUSIVO PARA DEFICIÊNTES VISUAIS

Apresentação

Diante da análise feita em relação a quantidade de pessoas que necessitam de um coadjutor no cotidiano, surgiu a ideia do desenvolvimento de uma ferramenta que tem como objetivo produzir um dispositivo para auxiliar deficiêntes visuais, permitindo uma melhor segurança nas ruas com o apoio de um aplicativo que possa conseguir uma boa viabilidade das configurações do usuário, atribuindo rotas acessíveis e de fácil acesso. A relevância deste tema reside em suprir as limitações causadas pela cegueira ou baixa visão, fazendo com que haja mais inclusão e independência na vida dessas pessoas.

Figura 1 – Projeção do dispositivo com IA. Fonte: Internet - bing image creator (2024)

Objetivos

Objetivo Geral:

Produzir um dispositivo para auxiliar deficiêntes visuais permitindo uma melhor segurança nas ruas com o apoio de um aplicativo para facilitar o uso do aparelho, e emitir de forma objetiva, dinâmica e prática as informações para o indivíduo.

Objetivos Específicos:

- Desenvolver um dispositivo equipado com sensores ultrassônicos e inteligência artificial que possibilite a identificação em tempo real de obstáculos no perímetro urbano para os deficientes visuais, proporcionando maior segurança e autonomia nas ruas;
- Associar o aplicativo VisionLink ao dispositivo, para que possa conseguir uma boa viabilidade das configurações do usuário atribuindo rotas acessíveis e de fácil acesso;
- Substituir a mobilidade dobrável pelo dispositivo tecnológico, contribuindo com a segurança dos demais e facilitando a trajetória dos deficientes visuais.

Metodologia

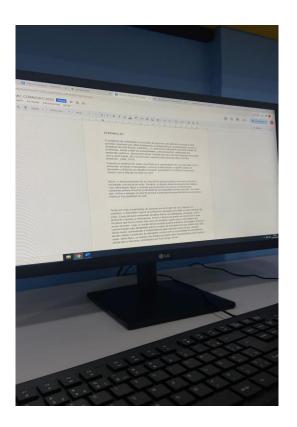


Figura 2 - Construção do plano de pesquisa. Fonte: Autoral (2023)

Figura 3 - Testes iniciais do aplicativo Figura 4 - Testes iniciais do aplicativo Fonte: Autoral (2023)

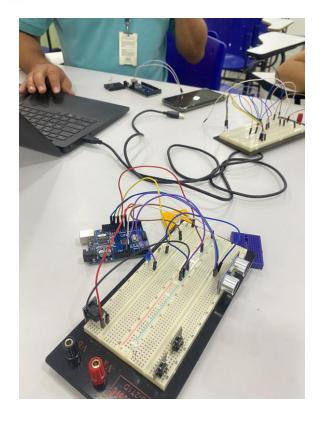


Figura 4 - Construção do dispositivo com placa de arduino.

Fonte: Autoral (2024)

Metodologia

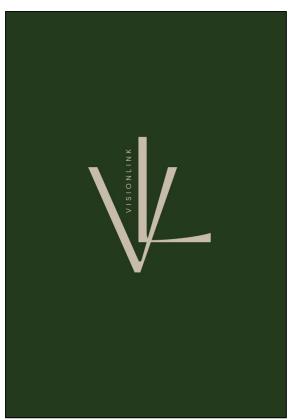


Figura 05 - Identidade visual do aplicativo.

Fonte: Autoral (2024)

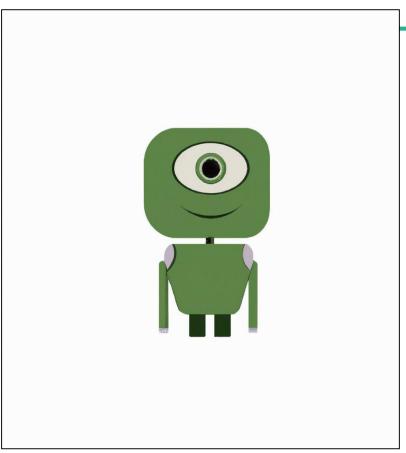


Figura 06 - Identidade visual da assistência de voz.

Fonte: Autoral (2024)

Resultados alcançados

DISPOSITIVO

Figura 07 – Dispositivo em 3D Fonte: Autoral (2024)

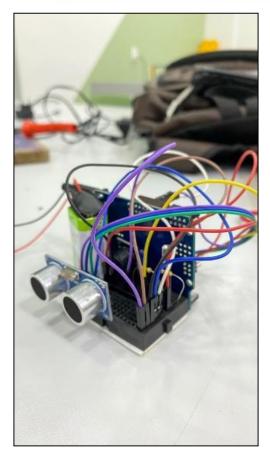


Figura 08 – Dispositivo estruturado. Fonte: Autoral (2024)

Resultados alcançados

• APLICATIVO

Figura 08, 09, 10 – Protótipo do aplicativo

Fonte: Autoral (2024)

Aplicabilidade dos resultados no cotidiano da sociedade

- O VisionLink trará para o cotidiano das pessoas portadoras da deficiência visual mais autonomia e independência nas
 ruas ao realizar tarefas que são consideráveis básicas e/ou comuns na sociedade. Sendo assim, nota-se tamanha
 importância de seu desenvolvimento, uma vez que irá proporcionar melhor qualidade de vida e um possível
 crescimento no mercado financeiro, pois é possível que ao longo dos anos ele seja introduzido no mercado;
- É importante mencionar que haja uma possibilidade da substituição da bengala utilizada por esse público, visto que com esse grande auxílio do dispositivo e aplicativo, o indivíduo que conseguir o mais breve fazer uso de ambos e se adaptar, poderá fazer essa substituição. Logo, o descarte dessas bengalas pode aumentar, entretanto é possível pensar em algo para aproveitar elas para que não prejudique o meio ambiente.

Criatividade e inovação

O projeto VisionLink representa um avanço significativo na tecnologia acessiva e demonstra o potencial da inovação para transformar a vida dos deficientes visuais. A combinação de criatividade e inovação reside na maneira como o projeto integra o design, a engenharia e a programação, encontrado na utilização de tecnologias novas, como a inteligência artificial. Desse modo, o projeto destaca-se pela:

- Abordagem da mobilidade e da inclusão no cotidiano dessas pessoas.
- Utilização de ferramentas e técnicas modernas.
- Continuação de soluções personalizadas e intuitivas.
- Contribuição de melhores condições e qualidade de vida de pessoas com deficiência visual.

Figura 11 – Projeção do dispositivo com IA. Fonte: Internet - bing image creator (2024)

Considerações finais

Até o presente momento, os testes realizados estão sendo úteis, encaminhando a resultados que favorecem e cumprem os objetivos, tendo em vista que o projeto prioriza a inclusão e independência do deficiênte visual. Esses resultados indicam que o projeto é efetivo em proporcionar melhores condições de vida para os usuários do dispositivo.

Portanto, este avanço é essencial, pois o projeto tem como preferência proporcionar aos deficientes visuais uma melhoria na participação das atividades cotidianas com maior autonomia e autoconfiança. Em suma, este projeto representa um andamento importante em direção à criação de um ambiente mais inclusivo. Espera-se que os resultados obtidos pelo dispositivo até agora contribuam para a construção de soluções ainda mais eficientes e inclusivas.

- Daniel Marques (Técnico em robótica);
- Universidade Estadual da Paraíba (Alunos do curso de computação).

De 09 a 29 de novembro de 2024

Realização

Apoiadores

